On Artin cokernel of the Group($Q_{2m} \times C_5$) where $m = p_1 \cdot p_2$, $\gcd(p_1, p_2) = 1$, $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

Ass. Prof. NASERR RASOOL MAHMOOD
University of Kufa
Faculty of Education for Girls
Department of Mathematics

SALAH HSAAOUN JIHADI
University of Kufa
Faculty of Education for Girls
Department of Mathematics

Abstract:

The main purpose of This paper is to find Artin s character table $\text{Ar}(Q_{2m} \times C_5)$ when m is an odd number such that $m = p_1 \cdot p_2$, $p_1, p_2 > 2$ where $\gcd(p_1, p_2) = 1$ and p_1, p_2 are primes numbers; where Q_{2m} is denoted to Quaternion group of order $4m$, time is said to have only one dimension and space to have three dimension, the mathematical quaternion partakes of both these elements; in technical language it may be said to be "time plus space", or "space plus time" and in this sense it has, or at least involves a reference to four dimensions, and how the one of time of space the three might in the chain of symbols girdled "- William Rowan Hamilton (Quoted in Robert Percival Graves "Life of sir William Rowan Hamilton" (3 vols., 1882, 1885, 1889)), and C_5 is Cyclic group of order 5. In 1962, C. W. Curits & I. Reiner studied Representation Theory of finite groups, In 1976, I. M. Isaacs studied Character Theory of finite groups, In 1982, M. S. Kirdar studied The Factor Group of the Z-Valued class function modulo the group of the Generalized Characters, In 1995, N.R. Mahmood studies The Cyclic Decomposition of the factor Group $\text{cf}(Q_{2m}, Z)/\bar{K} (G) (Q_{2m})$, In 2002, K-Sekiguchi studies Extensions and the Irreducibilities of the Induced
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi - On Artin cokernel of the Group($Q_{2m} \times C_5$) where $m=p_1.p_2$. g.c.d(p_1,p_2) = 1 , $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

Characters of Cyclic P-Group , In 2008, A.H.Abdul-Munem studied Artin Cokernel of The Quaternion group Q_{2m} when m is an Odd number, In 2006, A.S. Abed found the Artin characters table of dihedral group D^n when n is an odd number.

Key words: odd number, prime number, Quaternion group, and Cyclic group

1. INTRODUCTION:

Representation Theory is a branch of mathematics that studies abstract algebra structures by Representing their elements as linear transformations of vector spaces, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in items of matrix addition and matrix multiplication in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication, Moreover, representation and character theory provide applications, not only in other branches of mathematics but also in physics and chemistry.

Fore a finite group G, The factor group \overline{R}(G)/$T(G)$ is called the Artin cokernel of G denoted $AC(G)$, $\overline{R}(G)$ denoted the abelian group generated by Z-valued characters of G under the operation of point wise addition, $T(G)$ is a sub group of \overline{R}(G) which is generated by Artin's characters.

2-PRELIMINARS: (3,1) :[1]

The Generalized Quaternion Group Q_{2m}: For each positive integer $m\geq2$,The generalized Quaternion Group Q_{2m} of order $4m$ with two generators x and y satisfies $Q_{2m} = \{x^h y^k, 0 \leq h \leq 2m-}$
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the Group($Q_{2m} \times C_5$) where $m=p_1.p_2$, $g.c.d(p_1,p_2) = 1$, $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

1,k=0,1)Which has the following properties \{x^m=y^4=I,yx^my^{-1}=x^{-m}\}.Let G be a finite group ,all the characters of group G induced from a principal character of cyclic subgroup of G are called Artin characters of G . Artin characters of the finite group can be displayed in a table called Artin characters table of G which is denoted by Ar(G); The first row is Γ-conjugate classes ; The second row is The number of elements in each conjugate class, The third row is the size of the centralized $|C_G (CL_\alpha)|$ and other rows contains the values of Artin characters.

Theorem: (3,2): [2]
The general form of Artin characters table of C_p^s When p is a prime number and s is a positive integer number is given by :-

Ar(C_p^s)=

<table>
<thead>
<tr>
<th>Γ-classes</th>
<th>(1)</th>
<th>(x^{p^m}^{-1})</th>
<th>(x^{p^m}^{-1})</th>
<th>(x^{p^m}^{-1})</th>
<th>...</th>
<th>(x^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[CL_\alpha]$. (</td>
<td>C_p^s(CL_\alpha)</td>
<td>)</td>
<td>p^s</td>
<td>p^s</td>
<td>p^s</td>
<td>p^s</td>
</tr>
<tr>
<td>ϕ_{1}</td>
<td>p^s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>ϕ_{2}</td>
<td>p^{s-1}</td>
<td>p^{s-1}</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>ϕ_{3}</td>
<td>p^{s-2}</td>
<td>p^{s-2}</td>
<td>p^{s-2}</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>ϕ_{4}</td>
<td>p^{s-3}</td>
<td>p^{s-3}</td>
<td>p^{s-3}</td>
<td>p^{s-3}</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>ϕ_{5}</td>
<td>p^{s-4}</td>
<td>p^{s-4}</td>
<td>p^{s-4}</td>
<td>p^{s-4}</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>ϕ_{6}</td>
<td>p^{s-5}</td>
<td>p^{s-5}</td>
<td>p^{s-5}</td>
<td>p^{s-5}</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

Table (3,1)

Example : (3,3):-

We can write Artin characters tables of the groups C_{p_1} and C_{p_2} ,$p_1, p_2>2$ and p_1, p_2 are primes numbers
On Artin cokernel of the Group $\mathbb{Q}_{2m} \times C_5$ where $m=p_1.p_2$, g.c.d($p_1.p_2$) = 1, p_1, p_2 > 2 and p_1, p_2 are primes numbers

$$\text{Ar}(C_{p_2}) =$$

<table>
<thead>
<tr>
<th>Γ-classes</th>
<th>$[1]$</th>
<th>$[x]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{c_2}(CLα)</td>
<td>p_1</td>
<td>p_1</td>
</tr>
<tr>
<td>φ_1</td>
<td>p_1</td>
<td>0</td>
</tr>
<tr>
<td>φ_2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (3,2)

$$\text{Ar}(C_{p_1}) =$$

<table>
<thead>
<tr>
<th>Γ-classes</th>
<th>$[1]$</th>
<th>$[x]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{c_5}(CLα)</td>
<td>p_2</td>
<td>p_2</td>
</tr>
<tr>
<td>φ_1</td>
<td>p_2</td>
<td>0</td>
</tr>
<tr>
<td>φ_2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (3,3)

Corollary : (3,4): [2]

Let $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_n^{\alpha_n}$ where g.c.d(p_i, p_j) = 1, if $i \neq j$ and p_i’s are primes numbers, and α_n any positive integers,

$$\text{Ar}(C_m) = \text{Ar}(C_{p_1^{\alpha_1}}) \bigotimes \text{Ar}(C_{p_2^{\alpha_2}}) \bigotimes \cdots \bigotimes \text{Ar}(C_{p_n^{\alpha_n}}).$$

Then;

Example (3.5):-

Consider the cyclic group $C_2 \cdot p_1.p_2$, p_1, p_2 > 2, Where g. c. d($p_1.p_2$) = 1 and p_1, p_2 are primes numbers. To find Artin characters table for it, we use corollary (3,4) as the following: $\text{Ar}(C_2.p_1.p_2) = \text{Ar}(C_2) \bigotimes \text{Ar}(C_{p_1}) \bigotimes \text{Ar}(C_{p_2})$, by using theorem (3,2) to find $\text{Ar}(C_2)$ is given as follows :

$$\text{Ar}(C_2) =$$

<table>
<thead>
<tr>
<th>Γ-classes</th>
<th>$[1]$</th>
<th>$[x]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{c_2}(CLα)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>φ_1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>φ_2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (3,4)

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 1 / April 2016
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the Group($\mathbb{Q}_{2m} \times \mathbb{C}_5$) where $m = p_1 \cdot p_2$, g.c.d(p_1, p_2) = 1, $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

$$\text{Ar}(C_2 \cdot p_1, p_2) =$$

| Γ-classes | $|CL_\alpha|$ | $[1]$ | $[x^2]$ | $[x^{2p_1}]$ | $[x^{2p_2}]$ | $[x^{p_1}p_2]$ | $[x^{p_1}]$ | $[x^{p_2}]$ | $[x]$ |
|------------------|-------------|-------|----------|-------------|-------------|--------------|----------|----------|------|
| $C_{C_2 \cdot p_1, p_2}$ (CL_α) | $2p_1 p_2$ | $p_1 p_2$ | $p_1 p_2$ | $2p_1 p_2$ | $p_1 p_2$ | $p_1 p_2$ | $p_1 p_2$ | $p_1 p_2$ |
| φ_1 | $2p_1 p_2$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| φ_2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| φ_3 | 2p_1 | 0 | 2p_1 | 0 | 0 | 0 | 0 | 0 |
| φ_4 | 2p_1 | 0 | 0 | 2p_1 | 0 | 0 | 0 | 0 |
| φ_5 | $P_1 p_2$ | 0 | 0 | P_2 | 0 | 0 | P_2 | 0 |
| φ_6 | P_1 | 0 | P_1 | 0 | 0 | P_1 | 0 | 0 |
| φ_7 | P_2 | 0 | 0 | P_2 | 0 | 0 | P_2 | 0 |
| φ_8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table (3.5)

Theorem (3.6):[1]

The Artin characters table of the Quaternion group \mathbb{Q}_{2m} when m is an odd number is given as follows:

$$\text{Ar}(\mathbb{Q}_{2m}) =$$

Γ-Classes	$	C_{\mathbb{Q}_{2m}}(CL_\alpha)	$	x^{2r}	x^{2r+1}	$	y	$	
$	C_{\mathbb{Q}_{2m}}(\mathbb{C}_4)	$	$4m$	2	...	2	2m	2	
Φ_1	$2m$	2	...	2m	4m	2m	2m	2m	2
Φ_{l+1}	m	0	...	0	m	0	...	0	1

Table (3.7)

where $0 \leq r \leq m-1$, l is the number of Γ-classes of \mathbb{C}_{2m} and Φ_j are the Artin characters of the quaternion group \mathbb{Q}_{2m}, for all $1 \leq j \leq l+1$.

Example (3.6):

To construct $\text{Ar}(\mathbb{Q}_2 \cdot p_1, p_2)$, $p_1, p_2 > 2$ Where $\text{g.c.d}(p_1, p_2) = 1$ and p_1, p_2 are primes numbers. By using theorem (3.5):
On Artin cokernel of the Group\((Q_{2m} \times C_5)\) where \(m=p_1 \cdot p_2,\) g.c.d\((p_1, p_2) = 1, p_1, p_2 > 2\) and \(p_1, p_2\) are primes numbers

\[
\text{Ar}(Q_2 \cdot p_1, p_2) =
\]

\(\Gamma\)-Classes	\(1\)	\(x^2\)	\(x^{p_1}\)	\(x^{p_2}\)	\(x^{p_1, p_2}\)	\(x^{p_i}\)	\(x\)	\(y\)					
\(CL\alpha	\) \(Cl\alpha	\) \(\Phi_i\) \(\Phi_i	\)	\(4p_1p_2\)	\(2p_1p_2\)	\(2p_1p_2\)	\(2p_1p_2\)	\(2p_1p_2\)	\(2\)
\(\Phi_1\) \(4p_1, p_2\)	\(2\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)						
\(\Phi_2\) \(4\)	\(4\)	\(4\)	\(4\)	\(0\)	\(0\)	\(0\)	\(0\)						
\(\Phi_3\) \(4p_1\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)	\(0\)						
\(\Phi_4\) \(4p_2\)	\(0\)	\(0\)	\(4p_2\)	\(0\)	\(0\)	\(0\)	\(0\)						
\(\Phi_5\) \(2p_1p_2\)	\(0\)	\(0\)	\(0\)	\(2p_1p_2\)	\(0\)	\(0\)	\(0\)						
\(\Phi_6\) \(2p_1\)	\(0\)	\(2p_1\)	\(0\)	\(0\)	\(2p_1\)	\(0\)	\(0\)						
\(\Phi_7\) \(2p_2\)	\(0\)	\(2p_2\)	\(0\)	\(0\)	\(2p_1\)	\(0\)	\(0\)						
\(\Phi_8\) \(2\)	\(2\)	\(2\)	\(2\)	\(2\)	\(2\)	\(2\)	\(0\)						
\(\Phi_9\) \(p_1, p_2\)	\(0\)	\(0\)	\(0\)	\(p_1, p_2\)	\(0\)	\(0\)	\(1\)						

Table (3.8)

Theorem (3.8): [4]

Let \(H\) be a cyclic subgroup of \(G\) and \(h_1, h_2, \ldots, h_m\) are chosen representatives for the \(m\)-conjugate classes of \(H\) contained in \(CL(g)\) in \(G\), then :

\[
\phi'(g) = \begin{cases}
\frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^{m} \phi(h_i) & \text{if } h_i \in H \cap CL(g) \\
0 & \text{if } H \cap CL(g) = \phi
\end{cases}
\]

Proposition (3.9). [3]

The number of all distinct Artin characters on group \(G\) is equal to the number of \(\Gamma\)-classes on \(G\). Furthermore, Artin characters are constant on each \(\Gamma\)-classes.

3. THE MAIN RESULTS:

In this section we give the general form of Artin’s characters table of the group \((Q_{2m} \times C_5)\), When \(m=p_1, p_2, p_1, p_2 > 2\) Where g.c.d\((p_1, p_2) = 1\) and \(p_1, p_2\) are primes numbers. The group\((Q_{2m} \times C_5)\) is the direct product group of the quaternion group\(Q_{2m}\) of order \(4m\) and the cyclic group \(C_5\) of order 5, then the order of The group\((Q_{2m} \times C_5)\) is \(20m\).
Example: (4.1):-
Let \(m=15=3 \cdot 5 \), \(p_1 = 3 \), \(p_2 = 5 \), then \((Q_{2m}\times C_5) = (Q_{30}\times C_5) = (Q_{2.3.5}\times C_5)=\{(1,1)\), \((1, z)\), \((1, z^2)\), \((1, z^3)\), \((1, z^4)\) \}, \(x\), \(z\), \((x, z^2)\), \((x, z^3)\), \((x, z^4)\) \}, \((x, z^5)\), \((x, z^6)\), \((x, z^7)\), \((x, z^8)\), \((x, z^9)\), \((x, z^{10})\), \((x, z^{11})\), \((x, z^{12})\), \((x, z^{13})\), \((x, z^{14})\), \((x, z^{15})\) \}, \((x, z^{16})\), \((x, z^{17})\), \((x, z^{18})\), \((x, z^{19})\), \((x, z^{20})\), \((x, z^{21})\), \((x, z^{22})\), \((x, z^{23})\), \((x, z^{24})\), \((x, z^{25})\), \((x, z^{26})\), \((x, z^{27})\), \((x, z^{28})\), \((x, z^{29})\), \((x, z^{30})\) \}. to find Artin’s characters for this group, there are 18 cyclic subgroups, which are:

\(<1, 1>, <x^2, 1>, <x^4, 1>, <x^{10}, 1>, <x^{15}, 1>, <x^3, 1>, <x^5, 1>, <x, 1>, <y, 1>, <1, z>, <x^2, z>, <x^4, z>, <x^{10}, z>, <x^{15}, z>, <x^3, z>, <x^5, z>, <x, z>, <y, z>\),

then there are 18 \(\Gamma \)-Classes, we have 18 distinct Artin’s characters, Let \(g \in (Q_{30}\times C_5), g=(q, 1) \) or \(g=(q, z), q \in Q_{10} \), \(z \in C_5 \) and let \(\varphi \) the principal character of \(H \), \(\Phi_j \) Artin characters of \(Q_{10}, 1 \leq j \leq 9 \), then by using theorem (3.8):

\[
\Phi_j(g) = \begin{cases}
\frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^m \varphi(h_i) & \text{if } h_i \in H \cap CL(g) \\
0 & \text{if } H \cap CL(g) = \phi
\end{cases}
\]

Case (I): If \(H \) is a cyclic subgroup of \((Q_{2m}\times \{1\}) \) then:

\(H = <1,1> \), If \(g=(1,1) \)

\(\Phi_{(1,1)}(1,1) = \frac{|Q_{2m}\times C_5|}{|C_G(g)|} \varphi((1,1)) = \frac{300}{1} = 300 \) since \(H \cap CL(g) = \{1, (1,1)\} \)

\(\varphi(g) = 1 \)

Otherwise \(\Phi_{(1,1)}(g) = 0 \)

\(H = <x^2, 1> \), If \(g=(1,1) \)

\(\Phi_{(2,1)}(g) = \frac{|Q_{2m}\times C_5|}{|C_G(g)|} \varphi(g) = \frac{300}{15} = 20 \) since \(H \cap CL(g) = \{1, (1,1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^2, 1) \), \(\Phi_{(2,1)}(x^2, 1) = \frac{|Q_{2m}\times C_5|}{|C_G(g)|} \varphi(g) + \varphi(g^{-1}) = \frac{150}{15} (1 + 1) = 20 \) since \(H \cap CL(g) = \{g, g^{-1}\} \) and \(\varphi(g) = \varphi(g^{-1}) = 1 \)
If \(g = (x^6, I), \Phi_{(6,1)}((x^6, I)) = \frac{|C_{2x^6I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = 1 \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

If \(g = (x^{10}, I), \Phi_{(6,1)}((x^{10}, I)) = \frac{|C_{2x^{10}I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = 1 \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

Otherwise \(\Phi_{(6,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \)

If \(H = \langle x^6, I \rangle \), If \(g = (1, I), \Phi_{(6,1)}((1, I)) = \frac{|C_{2x^{6}I}|}{|C_{gI}|} \varphi \left(g \right) = \frac{300}{5} = 60 = 5.12 = 5. \Phi_3 (1) \) since \(H \cap CL(g) = (1, I) \) and \(\varphi \left(g \right) = 1 \)

If \(g = (x^6, I), \Phi_{(6,1)}((x^6, I)) = \frac{|C_{2x^6I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = \frac{150}{5} (1 + 1) = 60 = 5.12 = 5. \Phi_3 (x^6) \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

Otherwise \(\Phi_{(6,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \)

If \(H = \langle x^{10}, I \rangle \), If \(g = (1, I), \Phi_{(6,1)}((1, I)) = \frac{|C_{2x^{10}I}|}{|C_{gI}|} \varphi \left(g \right) = \frac{300}{5} = 100 = 5.20 = 5. \Phi_4 (1) \) since \(H \cap CL(g) = (1, I) \) and \(\varphi \left(g \right) = 1 \)

If \(g = (x^{10}, I), \Phi_{(6,1)}((x^{10}, I)) = \frac{|C_{2x^{10}I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = \frac{150}{5} (1 + 1) = 100 = 5.20 = 5. \Phi_4 (x^{10}) \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

Otherwise \(\Phi_{(6,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \)

If \(H = \langle x^{15}, I \rangle \), If \(g = (1, I), \Phi_{(6,1)}((1, I)) = \frac{|C_{2x^{15}I}|}{|C_{gI}|} \varphi \left(g \right) = \frac{300}{10} = 30 = 5.6 = 5. \Phi_5 (1) \) since \(H \cap CL(g) = (1, I) \) and \(\varphi \left(g \right) = 1 \)

Otherwise \(\Phi_{(6,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \)

If \(H = \langle x^6, I \rangle \), If \(g = (1, I), \Phi_{(6,1)}((1, I)) = \frac{|C_{2x^6I}|}{|C_{gI}|} \varphi \left(g \right) = \frac{300}{10} = 30 = 5.6 = 5. \Phi_6 (x^6) \) since \(H \cap CL(g) = (1, I) \) and \(\varphi \left(g \right) = 1 \)

If \(g = (x^6, I), \Phi_{(6,1)}((x^6, I)) = \frac{|C_{2x^6I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = \frac{150}{10} (1 + 1) = 30 = 5.6 = 5. \Phi_6 (x^6) \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

If \(g = (x^{15}, I), \Phi_{(6,1)}((x^{15}, I)) = \frac{|C_{2x^{15}I}|}{|C_{gI}|} \varphi \left(g \right) + \varphi \left(g^{-1} \right) = \frac{150}{10} (1 + 1) = 30 = 5.6 = 5. \Phi_6 (x^{15}) \) since \(H \cap CL(g) = (g, g^{-1}) \) and \(\varphi \left(g \right) = \varphi \left(g^{-1} \right) = 1 \)

Otherwise \(\Phi_{(6,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \)
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the
Group\(\mathbb{Q}_{2n} \times \mathbb{C}_3 \) where \(m=p_1, p_2, \) \(\text{g.c.d}(p_1, p_2) = 1, p_1, p_2 > 2 \) and \(p_1, p_2 \) are primes numbers

\[
\text{H}_7 = \langle x^6, I \rangle, \text{If } g = (1, I) \Phi(g, I)(1, I) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g)) = 300 = 5.10 = 5. \phi_5 (1) \text{ since } \bigcap \text{CL(g)} = (1, I), \text{and } \varphi(g) = 1
\]

If \(g = (x^{10}, I) \Phi(g, (x^{10}, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{6} (1 + 1) = 50 = 5.10 = 5. \phi_5 \text{ (x^{10})}
\]

since \(\bigcap \text{CL(g)} = \{ g, g^{-1} \} \) and \(\varphi(g) = \varphi(g^{-1}) = 1 \)

If \(g = (x^{15}, I) \Phi(g, (x^{15}, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g)) = 300 = 1 = 50 = 5.10 = 5. \phi_5 \text{ (x^{15})} \text{ since } \bigcap \text{CL(g)} = (x^{15}, I), \text{and } \varphi(g) = 1
\]

Otherwise \(\Phi(g, (1)) = 0 \text{ since } \bigcap \text{CL(g)} = \phi \)

\(\text{H}_8 = \langle x^3, I \rangle, \text{If } g = (1, I) \Phi(g, (3, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g)) = \frac{300}{30} = 10 = 5.2 = 5. \phi_5 (1) \text{ since } \bigcap \text{CL(g)} = (1, I) \text{ and } \varphi(g) = 1 \)

If \(g = (x^3, I) \Phi(g, (3, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^3)} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^7, I) \Phi(g, (7, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^7)} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^{10}, I) \Phi(g, (10, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^{10})} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^3, I) \Phi(g, (3, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^3)} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^5, I) \Phi(g, (5, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^5)} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^7, I) \Phi(g, (7, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{150}{30} (1 + 1) = 10 = 5.2 = 5. \phi_5 \text{ (x^7)} \text{ since } \bigcap \text{CL(g)} = \{ g, g^{-1} \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1
\]

If \(g = (x^{10}, I) \Phi(g, (10, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g)) = \frac{300}{4} = 1 = 75 = 5.15 = 5. \phi_5 \text{ (x^{10})} \text{ since } \bigcap \text{CL(g)} = (x^{15}, I) \text{ and } \varphi(g) = 1
\]

Otherwise \(\Phi(g, (1)) = 0 \text{ since } \bigcap \text{CL(g)} = \phi \)

\(\text{H}_9 = \langle y^2, I \rangle, \text{If } g = (1, I) \Phi(g, (3, I)) = \frac{|\mathbb{Q}_{2n} \times \mathbb{C}_3(g)|}{|\mathfrak{g}(g)|} (\varphi(g)) = \frac{300}{4} = 1 = 75 = 5.15 = 5. \phi_5 \text{ (y^2)} \text{ since } \bigcap \text{CL(g)} = (1, I) \text{ and } \varphi(g) = 1
\]
If \(g=(x^{10}, I) \), then \(\Phi_{(10)}((x^{10}, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(10)}|} \) and \(\varphi(g) = 1 = 60 = \Phi_1(1) \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(y, I) \), then \(\Phi_{(1)}((y, I)) = \frac{|Q_{2m} \times C_5(y)|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{\phi, g^{-1}\} \)

Otherwise \(\Phi_{(1)}(g) = 0 \) since \(H \cap \text{CL}(g) = \phi \)

Case (II): If \(H \) is a cyclic subgroup of \((Q_{2m} \times \{\phi\}) \), then:

\(H_2 = \phi \), if \(g=(1, I) \), then \(\Phi_{(1, 2)}((1, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

Otherwise \(\Phi_{(1, 2)}(g) = 0 \) since \(H \cap \text{CL}(g) = \phi \)

\(H_2 = \phi \), if \(g=(1, I) \), then \(\Phi_{(2, 3)}((x, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^2, I) \), then \(\Phi_{(2, 3)}((x^2, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^3, I) \), then \(\Phi_{(2, 3)}((x^3, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^4, I) \), then \(\Phi_{(2, 3)}((x^4, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^5, I) \), then \(\Phi_{(2, 3)}((x^5, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^{10}, I) \), then \(\Phi_{(2, 3)}((x^{10}, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

If \(g=(x^{10}, I) \), then \(\Phi_{(2, 3)}((x^{10}, I)) = \frac{|Q_{2m} \times C_5|}{|G_{(1)}|} \) and \(\varphi(g) = \varphi(g^1) = 1 \) since \(H \cap \text{CL}(g) = \{(1, 1)\} \) and \(\varphi(g) = 1 \)

Otherwise \(\Phi_{(2, 3)}(g) = 0 \) since \(H \cap \text{CL}(g) = \phi \)
If $g = (1, I), \Phi_{5, 2}((1, I)) = \frac{|C_{Q_{2^a} \times C_5}|}{|C_{\Phi}(g)|} \phi_5 = 30 = \Phi_5 (1)$ since $H \cap CL(g) = (1, I)$ and $\Phi (g) = 1$

If $g = (1, z), \Phi_{5, 2}((1, z)) = \frac{|C_{Q_{2^a} \times C_5}|}{|C_{\Phi}(g)|} \phi_5 = 30 = \Phi_5 (1)$ since $H \cap CL(g) = (1, z)$ and $\Phi (g) = 1$
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the Group($\mathbb{Q}_{10} \times C_5$) where $m=p_1.p_2$. g.c.d(p_1,p_2) = 1, $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

If $g=(1,z), \Phi_{(6,2)}((1,z))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{50}.1=6=\phi_5 (1)$ since $H \cap \text{CL}(g)\{1, z\}$ and $\varphi(g)=1$

If $g=(x^6,l), \Phi_{(6,2)}((x^6,l))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{50}.(1+1)=6=\phi_6 (x^6)$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

If $g=(x^6, z), \Phi_{(6,2)}((x^6,z))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{50}.(1+1)=6=\phi_6 (x^6)$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

If $g=(x^{15}, l), \Phi_{(6,2)}((x^{15}, l))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{50}.1=6=\phi_6 (x^{15})$ since $H \cap \text{CL}(g)\{1, (x^{15})\}$ and $\varphi(g)=1$

If $g=(x^{15}, z), \Phi_{(6,2)}((x^{15}, z))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{50}.1=6=\phi_6 (x^{15})$ since $H \cap \text{CL}(g)\{1, (x^{15})\}$ and $\varphi(g)=1$

If $g=(x^3, l), \Phi_{(6,2)}((x^3, l))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{50}.(1+1)=6=\phi_6 (x^3)$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

If $g=(x^3, z), \Phi_{(6,2)}((x^3,z))= \frac{\mid \mathbb{Q}_{10} \times C_5 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{50}.(1+1)=6=\phi_6 (x^3)$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

Otherwise $\Phi_{(6,2)}(g)=0$ since $H \cap \text{CL}(g)=\phi$ $H:=<x^3, z>$, If $g=(1, l), \Phi_{(7,2)}((1, l))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{30}.1=10=\phi_5 (1)$ since $H \cap \text{CL}(g)\{1, (1, l)\}$ and $\varphi(g)=1$

If $g=(1, z), \Phi_{(7,2)}((1, z))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{30}.1=10=\phi_5 (1)$ since $H \cap \text{CL}(g)\{1, (1, z)\}$

If $g=(x^{10}, l), \Phi_{(7,2)}((x^{10}, l))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{30}.(1+1)=10=\phi_5 (x^{10})$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

If $g=(x^{10}, z), \Phi_{(7,2)}((x^{10}, z))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g) + \varphi(g^-))=\frac{150}{30}.(1+1)=10=\phi_5 (x^{10})$ since $H \cap \text{CL}(g)\{g, g^-\}$ and $\varphi(g)=\varphi(g^-)=1$

If $g=(x^{15}, l), \Phi_{(7,2)}((x^{15}, l))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{30}.1=10=\phi_5 (x^{15})$ since $H \cap \text{CL}(g)\{1, (x^{15})\}$ and $\varphi(g)=1$

If $g=(x^{15}, z), \Phi_{(7,2)}((x^{15}, z))= \frac{\mid \mathbb{Q}_{2} \times C_3 \mid}{\mid \mathbb{Q}_{5} \mid} (\varphi(g))=\frac{300}{30}.1=10=\phi_5 (x^{15})$ since $H \cap \text{CL}(g)\{1, (x^{15})\}$ and $\varphi(g)=1$
If $g=(x^i,z), \Phi_{(7,2)}((x^i,z)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{150}{30} (1+1) = 10 = \phi_x(x^i)$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

Otherwise $\Phi_{(7,2)}(g) = 0$ since $H \cap CL(g) = \phi$

If $g=(1,1), \Phi_{8,2}(1,1) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) = \frac{300}{150} = 2 = \phi_b(1)$ since $H \cap CL(g) = \{(1,1)\}$ and $\varphi(g) = 1$

If $g=(x^2,1), \Phi_{8,2}((x^2,1)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^2)$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^2, z), \Phi_{8,2}((x^2, z)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^2)$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^4,1), \Phi_{8,2}((x^4,1)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^4)$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^4, z), \Phi_{8,2}((x^4, z)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^4)$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^{10},1), \Phi_{8,2}((x^{10},1)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^{10})$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^{10}, z), \Phi_{8,2}((x^{10}, z)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) + \varphi(g^{-1}) = \frac{300}{150} (1+1) = 2 = \phi_b(x^{10})$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$

If $g=(x^{15},1), \Phi_{8,2}((x^{15},1)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) = \frac{300}{150} (1) = 2 = \phi_b(x^{15})$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(1) = 1$

If $g=(x^{15}, z), \Phi_{8,2}((x^{15}, z)) = \frac{|\mathbb{Q}_{2a} \times \mathbb{C}_5|}{|\mathbb{H}(g)|} (\varphi(g) = \frac{300}{150} (1) = 2 = \phi_b(x^{15})$ since $H \cap CL(g) = \{ g \} \text{ and } \varphi(g) = \varphi(1) = 1$
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the Group \((\mathbb{Q}_{2m} \times \mathbb{C}_5)\) where \(m=p_1, p_2\), \(g.c.d(p_1, p_2) = 1\), \(p_1, p_2 > 2\) and \(p_1, p_2\) are primes numbers

If \(g=(x^5, z), \Phi_{(9, 2)}((x^5, z)) = \frac{\zeta_{30} \times \zeta_5(g)}{\zeta_2(g)} \left(\varphi(g) + \varphi(g^{-1}) \right) = -\frac{300}{150} (1 + 1) = 2 = \varphi_9(x^5)\) since \(H \bigcap CL(g)\)

Otherwise \(\Phi_{(9, 2)}(g) = 0\) since \(H \bigcap CL(g) = \phi\)

Then, the Artin characters table of \((\mathbb{Q}_{30} \times \mathbb{C}_5)\) is given in the following Table:

\[\text{Ar}(\mathbb{Q}_{30} \times \mathbb{C}_5) = \]
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. **On Artin cokernel of the Group**$\left(\mathbb{Q}_{2m}\times \mathbb{C}_5\right)$** where** $m=p_1p_2$, $g.c.d(p_1,p_2)=1$, $p_1,p_2>2$ **and** p_1,p_2 **are primes numbers**

| Table (4.1) |

Theorem (4.2):

The Artin’s character table of the group $\left(\mathbb{Q}_{2m}\times \mathbb{C}_5\right)$ where $m=p_1p_2$, $p_1,p_2>2$ and p_1,p_2 are primes numbers; is given as follows:

$$\text{Ar}(\mathbb{Q}_{2m}\times \mathbb{C}_5)=$$

| Table (4.2) Which is 18×18 matrix square. |

Proof:

Let $g \in \left(\mathbb{Q}_{2m} \times \mathbb{C}_5\right)$; $g=(q,I)$ or $g=(q,z)$, $q \in \mathbb{Q}_{2m}, I,z \in \mathbb{C}_5$

Case (I): If H is a cyclic subgroup of (Q_{2m}× {I}), then:

1. $H=\langle (x,I) \rangle$
2. $H=\langle (y,I) \rangle$

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 1 / April 2016
Naserr Rasool Mahmood, Salah Hsaaoun Jihadi. On Artin cokernel of the Group\((\mathbb{Q}_{2m} \times C_5)\) where \(m=p_1p_2\), \(\text{g.c.d}(p_1, p_2) = 1\), \(p_1, p_2 > 2\) and \(p_1, p_2\) are primes numbers

and \(\varphi\) the principal character of \(H\), \(\Phi_j\) Artin characters of \(\mathbb{Q}_{2m}\), \(1 \leq j \leq l + 1\) then by using theorem (3,8):

\[
\Phi_j(g) = \begin{cases}
\frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^m \varphi(h_i) & \text{if } h_i \in H \cap \text{CL}(g) \\
0 & \text{if } H \cap \text{CL}(g) = \phi
\end{cases}
\]

(i) If \(g = (1, I)\), \(\Phi_{(1,1)}(g) = \frac{|C_{\mathbb{Q}_{2m} \times C_5}(\text{CL}, 0)|}{|C_H(g)|} \varphi((1,1)) = \frac{20m}{|C_H((1,1))|} . 5 \Phi_j(1)\) since \(H \cap \text{CL}(1,1) = \{(1,1)\}\) and \(\varphi(g) = 1\)

(ii) If \(g = (x^m, I)\), \(g \in H\), \(\Phi_{(1)}(g) = \frac{|C_{\mathbb{Q}_{2m} \times C_5}(\text{CL}, 0)|}{|C_H(g)|} \varphi(g) = \frac{20m}{|C_H(x^m, I)|}.1 = \frac{5|\mathbb{Q}_{2m}(x^m)|}{|C_{<\times>(x^m)|}.1 = 5 \Phi_j(x^m)\) since \(H \cap \text{CL}(g) = \{g\}\) and \(\varphi(g) = 1\)

(iii) If \(g \neq (x^m, I)\) and, \(g \in H\), \(\Phi_{(1)}(g) = \frac{|C_{\mathbb{Q}_{2m} \times C_5}(\text{CL}, 0)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1})) = \frac{10m}{|C_H(g)|}(1 + 1) = \frac{20m}{|C_H(g)|} = \frac{5|\mathbb{Q}_{2m}(q)|}{|C_{<\times>(q)|} = 5 \Phi_j(q)\) since \(H \cap \text{CL}(g) = \{g, g^{-1}\}, g = (q, I), q \in \mathbb{Q}_{2m}, q \neq x^m\) and \(\varphi(g) = \varphi(g^{-1}) = 1\)

(iv) If \(g \notin H\), \(\Phi_{(1)}(g) = 0 = 5 \Phi_j(q)\) since \(H \cap \text{CL}(g) = \phi\) and \(q \in \mathbb{Q}_{2m}\)

2-IF \(H = \langle y, I \rangle = \{(1, I), (y, I), (y^2, I), (y^3, I)\}\)

(i) If \(g = (1, I)\), \(\Phi^{(l+1)}(l_1) = \frac{|C_{\mathbb{Q}_{2m} \times C_5}(\text{CL}, 0)|}{|C_H(g)|} \varphi(g) = \frac{20m}{4}.1 = 5.m = 5\Phi_j(1)\) since \(H \cap \text{CL}(1, I) = \{(1, I)\}\) and \(\varphi(g) = 1\)
(ii) If \(g = (x^m, I) = (y^2, I) \) and \(g \in H \), then
\[
\Phi^{(i+1,1)}(g) = \left| \frac{C_{Q_{2m} \times C_5}(CL,g)}{C_H(g)} \right| \Phi(g)
\]
\[
= \frac{20m}{4} \cdot 1 = 5m = 5 \Phi_{(i+1)}(x^m)
\]
since \(H \cap CL(g) = \{g\} \) and \(\Phi(g) = 1 \).

(ii) If \(g \neq (x^m, I) \) and \(g \in H \), i.e. \(\{g = (y, I) \) or \(g = (y^3, I)\} \), then
\[
\Phi^{(i+1,1)}(g) = \left| \frac{C_{Q_{2m} \times C_5}(CL,g)}{C_H(g)} \right| \left(\Phi(g) + \Phi(g^{-1}) \right)
\]
\[
= \frac{10}{4} \cdot (1 + 1) = \frac{20}{4} = 5.1 = 5 \Phi_{(i,1)}(y)
\]
since \(H \cap CL(g) = \{g, g^{-1}\} \) and \(\Phi(g) = \Phi(g^{-1}) = 1 \).
Otherwise \(\Phi^{(i+1,1)}(g) = 0 \) since \(H \cap CL(g) = \phi \).

Case (II): If \(H \) is a cyclic subgroup of \((Q_{2m} \times \{z\}) \) then:
\[
1 \cdot H = \langle (x, z) \rangle \quad 2 \cdot H = \langle (y, z) \rangle
\]
and \(\Phi \) the principal character of \(H \), \(\Phi_j \) Artin characters of \(Q_{2m} \), \(1 \leq j \leq l + 1 \) then by using theorem (3,8):
\[
\Phi_j(g) = \left\{
\begin{array}{ll}
\left| \frac{C_G(g)}{C_H(g)} \right| \sum_{i=1}^{m} \phi(h_i) & \text{if } h_i \in H \cap CL(g) \\
0 & \text{if } H \cap CL(g) = \phi
\end{array}
\right.
\]
\[
1 \cdot H = \langle (x, z) \rangle
\]
(i) If \(g = (1, I), (1, z) \), then
\[
\Phi_{(i,2)}(g) = \left| \frac{C_{Q_{2m} \times C_5}(CL,g)}{C_H(g)} \right| \Phi(g)
\]
\[
= \frac{20m}{|C_H((1, I))|} \cdot 1 = \frac{5}{5} \cdot \frac{|Q_{2m}(1)|}{|C_{<x>(1)|} \Phi(1) = \Phi_j(1)
\]
since \(H \cap CL(g) = \{1, (1, z)\} \) and \(\Phi(g) = 1 \).

(ii) \(g = (1, I), (x^m, I)(x^m, z), (1, z) \); \(g \in H \)

If \(g = (1, I), (1, z) \), then
\[
\Phi_{(i,2)}(g) = \left| \frac{C_{Q_{2m} \times C_5}(CL,g)}{C_H(g)} \right| \Phi(g)
\]
\[
= \frac{20m}{|C_H((1, I))|} \cdot 1 = \frac{5}{5} \cdot \frac{|Q_{2m}(1)|}{|C_{<x>(1)|} \Phi(1) = \Phi_j(1)
\]
since \(H \cap CL(g) = \{g\} \) and \(\Phi(g) = 1 \).
\(\text{If } g=(x^m,1), (x^m,z) \), \(\Phi_{(i,2)}(g) = \frac{|C_{Q_{2m}} \times C_5(C_{\omega})|}{|C_H(g)|} \varphi(g) \)

\(= \frac{|Q_{2m}(x^m)|}{5} \frac{|C_{< \omega}(x^m)|}{\varphi(x^m)} = \Phi_j(x^m) \) since \(H \cap CL(g) = \{g\} \) and \(\varphi(g) = 1 \)

(iii) If \(g \neq (x^m,1), (x^m,z) \) and, \(g \in H \)

\(\Phi_{(i,2)}(g) = \frac{|C_{Q_{2m}} \times C_5(C_{\omega})|}{|C_H(g)|} = (\varphi(g) + \varphi(g^{-1}) = \frac{10}{|C_H(g)|} (1 + 1) = \frac{5 |Q_{2m}(q)|}{5 |C_{< \omega}(q)|} \varphi(q) = \Phi_j(q) \) since \(H \cap CL(g) = \{g, g^{-1}\} \), \(\varphi(g) = \varphi(g^{-1}) = 1 \) and \(g=(q,z), q \in Q_{2m} ; q \neq x^m \)

(iv) If \(g \notin H \)

\(\Phi_{(i,2)}(g) = 0 = \Phi_j(q) \) since \(H \cap CL(g) = \phi \) and \(q \in Q_{2m} \)

2-IF \(H = \langle y, I \rangle = \{(1, I), (y, I), (y^2, 1), (y^3, I), (1, z), (y, z), (y^2, z), (y^3, z), (1, z^2), (y, z^2), (y^2, z^2), (y^3, z^3), (1, z^3), (y, z^3), (y^2, z^3), (y^3, z^4), (1, z^4), (y, z^4), (y^2, z^4), (y^3, z^5) \} \)

(i) If \(g = (1, I), (1, z) \), \(\Phi_{(i+1,2)}(g) = \frac{|C_{Q_{2m}} \times C_5(C_{\omega})|}{|C_H(g)|} \varphi(g) = \frac{20m}{20}. 1 = m \) = \(\Phi_{i+1}(g) \)

(ii) If \(g = (y^2, I) = (x^m, I), (y^2, z), (y^2, z^2), (y^2, z^3), (y^2, z) \) and \(g \in H \)

\(\Phi_{(i+1,2)}(g) = \frac{|C_{Q_{2m}} \times C_5(C_{\omega})|}{|C_H(g)|} \varphi(g) = \frac{20m}{20}. 1 = m = \Phi_{i+1}(g) \) since \(H \cap CL(g) = \{g\} \) and \(\varphi(g) = 1 \)

(ii) If \(g \neq (x^m, I) \) and \(g \in H \) i.e \(g = \{(y, I), (y, z), (y, z^2), (y, z^3), (y, z^4)\} \) or \(g = (y^3, I), (y^3, z), (y^3, z^2), (y^3, z^3), (y^3, z^4) \}

\(\Phi_{(i+1,2)}(g) = \frac{|C_{Q_{2m}} \times C_5(C_{\omega})|}{|C_H(g)|} = (\varphi(g) + \varphi(g^{-1}) = \frac{10}{20} (1 + 1) = 1 = \Phi_{i+1}(g) \) since \(H \cap CL(g) = \{g, g^{-1}\} \) and \(\varphi(g) = \varphi(g^{-1}) = 1 \)

Otherwise \(\Phi_{(i+1,2)}(g) = 0 \) since \(H \cap CL(g) = \phi \)
On Artin cokernel of the Group \(\mathbb{Q}_{2m} \times \mathbb{C}_5 \) where \(m = p_1.p_2 \), g.c.d\((p_1,p_2) = 1 \), \(p_1, p_2 > 2 \) and \(p_1, p_2 \) are primes numbers

Example (4.3):

To construct \(\text{Ar}(\mathbb{Q}_{66} \times \mathbb{C}_5) = \text{Ar}(\mathbb{Q}_{2.3.11} \times \mathbb{C}_5), p_1 = 3, p_2 = 11 \), we use theorem (3,5) as the following :

\[
\text{Ar}(\mathbb{Q}_{66}) =
\]

<table>
<thead>
<tr>
<th>(\ell)-Classes</th>
<th>([1])</th>
<th>([x^2])</th>
<th>([x^6])</th>
<th>([x^{22}])</th>
<th>([x^{33}])</th>
<th>([x^3])</th>
<th>([x^{11}])</th>
<th>([x])</th>
<th>([\ell])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_1)</td>
<td>132</td>
<td>66</td>
<td>66</td>
<td>132</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_5)</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_6)</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_7)</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_8)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\phi_9)</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table (4,3)

Then by using theorem (4,2) Artin characters table of the group \(\mathbb{Q}_{66} \times \mathbb{C}_5 \) is:-

\[
\text{Ar}(\mathbb{Q}_{66} \times \mathbb{C}_5) =
\]

<table>
<thead>
<tr>
<th>(\ell)-Classes</th>
<th>([1])</th>
<th>([2])</th>
<th>([3])</th>
<th>([4])</th>
<th>([5])</th>
<th>([6])</th>
<th>([7])</th>
<th>([8])</th>
<th>([9])</th>
<th>([10])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_1)</td>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>330</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_5)</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_6)</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_7)</td>
<td>10</td>
</tr>
<tr>
<td>(\phi_8)</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_9)</td>
<td>92</td>
<td>92</td>
<td>0</td>
<td>92</td>
<td>92</td>
<td>0</td>
<td>92</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_{10})</td>
<td>6</td>
</tr>
<tr>
<td>(\phi_{11})</td>
<td>2</td>
</tr>
<tr>
<td>(\phi_{12})</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table (4,4)
On Artin cokernel of the Group($Q_{2m} \times C_5$) where $m=p_1p_2$, $g.c.d(p_1,p_2) = 1$, $p_1, p_2 > 2$ and p_1, p_2 are primes numbers

REFERENCES