

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Coupled Fixed Point Theorem on Partially Ordered G-metric Space

MADHU SHRIVASTAVA TIT Group of Institution, Bhopal, India Dr. K. QURESHI Ret. Additional Director, Bhopal, India Dr. A. D. SINGH Govt. M. V. M. College,Bhopal, India

Abstract:

Ayedi et al. established coupled coincidence and coupled common fixed point result. Recently Erdal Karapinar, Billur Kayamakcalan and Kenan Tas [19] improved and extend the coupled fixed point of Ayedi et al.[2] Now we prove some recent coupled fixed point theorem in partially ordered G-metric spaces.

Key words: Coupled Fixed Point Theorem, Partially Ordered Gmetric Space

INTRODUCTION AND PRELIMINARY:

One of the simplest and the most useful result in the fixed point theory is a Banach Contraction Principal [6]. These principal has been generalized in different direction in different spaces by mathematicians.

In [2] Ayedi et al. establised coupled coincidence and coupled common fixed point results for a mixed g-monotone mapping satisfying Non-linear contraction in partially ordered G-metric spaces .These result generalize those of Choudhary

and Maity [9]. Consequently Erdal Karapinar ,Billur Kaymakcalan and Kenan Tas improved the result of Ayedi et al.

Definition 1.1 Let X be a non-empty set, and $G : X \times X \times X \rightarrow R+$ be a function satisfying the following properties:

(G1) G(x, y, z) = 0, if x = y = z,

(G2) 0 < G(x, x, y) for all x, y $\in X$ with $x \neq y$,

(G3) G(x, x, y) \leq G(x, y, z) for all x, y, z \in X with y \neq z,

(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all x, y, z, a $\in X$ (rectangle inequality).

Then the function G is called a generalized metric or, more specially, a G-metric on X, and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by dG(x, y) = G(x, y, y) + G(y, x, x), for all x, y \in X. (1.1)

Example 1.2 Let (X, d) be a metric space. The function G: $X \times X \times X \rightarrow [0, +\infty)$, defined by

 $G(x, y, z) = max\{d(x, y), d(y, z), d(z, x)\}$ or G(x, y, z) = d(x, y) + d(y, z) + d(z, x), for all x, y, $z \in X$, is a Gmetric on X.

Definition 1.3 Let (X,G) be a G-metric space, and let $\{x_n\}$ be a sequence of points of

We say that (x_n) is G-convergent to $x \in X$ if $\lim n, m \to +\infty$ $G(x, x_n, x_m) = 0$, that is, for any $\epsilon > 0$, there exists $N \in N$ such that $G(x, x_n, x_m) < \epsilon$, for all $n, m \ge N$. We call x the limit of the sequence and write $x_n \to x$ or $\lim n \to +\infty$ $x_n = x$.

Proposition 1.4 Let (X,G) be a G-metric space. The following are equivalent:

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016

- (1) $\{x_n\}$ is G-convergent, to x
- (2) G(x_n, x_n x,) \rightarrow 0 as n \rightarrow + ∞ ,
- (3) G(x_n, x, x) $\rightarrow 0$ as $n \rightarrow +\infty$,
- (4) $G(x_n, x_n, x) \rightarrow 0 \text{ as } n, m \rightarrow +\infty$.

Definition 1.5 Let (X, G) be a G-metric space. A sequence $\{x_n\}$ is called a G-Cauchy sequence if, for any $\varepsilon > 0$, there is N ϵ N such that $G(x_n, x_m, x_l) < \varepsilon$ for all m, n, $l \ge N$, that is, $G(x_n, x_m, x_l) \rightarrow 0$ as n, m, $l \rightarrow +\infty$.

Proposition 1.6 Let (X, G) be a G-metric space. Then the following are equivalent:

(1) The sequence $\{x_n\}$ is G-Cauchy,

(2) For any $\epsilon > 0$, there exists $N \in N$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $m, n \ge N$.

Proposition 1.7 Let (X,G) be a G-metric space. A mapping $f: X \to X$ is G-continuous at x_0 if and only if it is G-sequentially continuous at x_0 , that is, whenever (x_n) is G-convergent to x_0 , the sequence $(f(x_n))$ is G-convergent to $f(x_0)$.

Definition 1.8 A G-metric space (X,G) is called G-complete if every G-Cauchy sequence is G-convergent in (X,G).

Definition 1.9 Let (X, G) be a G-metric space. A mapping F: X $\times X \rightarrow X$ is said to be continuous if for any two G-convergent sequences $\{x_n\}$ and $\{y_n\}$ converging to x, y respectively, $\{F(x_n, y_n)\}$ is G-convergent to F(x, y).

Let (X, \leq) be a partially ordered set and (X, G) be a G-metric space, $g: X \to X$ be a mapping.

A partially ordered G-metric space, (X, G, \leq) , is called g-ordered complete if for each convergent sequence $\{x_n\}_{n=0}^{\infty} \subset X$, the following conditions hold:

(1) if $\{x_n\}$ is a non-increasing sequence in X such that $x_n \rightarrow x$ implies $gx \leq g x_n$, $\forall n \in N$,

(2) if $\{y_n\}$ is a non-decreasing sequence in X such that $y_n \rightarrow y$ implies $gy \ge gy_n$, $\forall n \in N$.

Moreover, a partially ordered G-metric space, (X,G, \leq) , is called ordered complete when g is equal to identity mapping in the above conditions (1) and (2).

Definition 1.10 An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $F : X \times X \rightarrow X$ if F(x, y) = x and F(y, x) = y.

Definition 1.11 An element $(x, y) \in X \times X$ is called a coupled coincidence point of a mapping

 $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if F(x, y) = g(x), F(y, x) = g(y).

Moreover, $(x, y) \in X \times X$ is called a common coupled coincidence point of F and g if F(x, y) = g(x) = x, F(y, x) = g(y) = y.

Definition 1.12 Let $F : X \times X \to X$ and $g : X \to X$ be mappings. The mappings F and g are said to commute if g(F(x, y)) = F(g(x), g(y)), for all $x, y \in X$.

Definition 1.13 Let (X, \leq) be a partially ordered set and $F : X \times X \rightarrow X$ be a mapping.

Then F is said to have mixed monotone property if F(x, y) is monotone non-decreasing in x and is monotone non-increasing in y, that is, for any $x, y \in X$,

$$\begin{split} & x_1 {\leq} \, x_2 \Rightarrow F(x_1,y) {\leq} \, F \; (x_2,y), \, \text{for } x_1, \, x_2 \in X, \\ & \text{And} \; y_1 {\leq} \; y_2 \Rightarrow F(x,y_2) {\leq} \; F(x,y_1 \;), \, \text{for } y_1, \, y_2 \in X. \end{split}$$

Definition1.14 Let (X,\leq) be a partially ordered set and $F : X \times X \to X$ and $g : X \to X$ be two mappings. Then F is said to have mixed g-monotone property if F(x, y) is monotone g-non-decreasing in x and is monotone g-non-increasing in y, that is, for any $x, y \in X$,

$$\begin{split} g(x_1) &\leq g(x_2) \Rightarrow F(x_1, \, y) \leq F(x_2, \, y), \, \text{for } x_1, \, x_2 \in X, \text{) and} \quad (1.2) \\ g(y_1) &\leq g(y_2) \Rightarrow F(x, \, y_2) \leq F(x, \, y_1 \,), \, \text{for } y_1 \, , \, y_2 \in X. \end{split}$$

Let \emptyset denote the set of functions $\emptyset^{-1} : [0,\infty) \rightarrow [0,\infty)$ satisfying (a) $\emptyset^{-1}(\{0\}) = \{0\},$ (b $\emptyset(t) < t$ for all t > 0, (c) lim $r \rightarrow t+ \ \emptyset(r) < t$ for all t > 0.

Main Result:

Theorem-2.1 Let (X, \leq) be a partially ordered set and G be a Gmetric on X such that (X, G) is a complete G-metric .Suppose that there exist $\Phi \in \Phi$, f:X x X \rightarrow X and g : X \rightarrow X such that $[G(f(x,y), f(u,v), f(w,z))] + [G(f(y,x), f(v,u), f(z,w))] \leq$ $[G(gx, gu, gw) + G(gy, gv, gz)] - \Phi [G(gx, gu, gw) + G(gy, gv, gz)]$ (2.1)

For all x, y, u, v, w, $z \in X$ with $gw \le gu \le gx$ and $gy \le gv \le gz$. suppose also that f is continuous and has the mixed g-monotone property, $f(X \times X) \subseteq g(x)$ and g is continuous and commutes with f. If there existx₀, $y_0 \in X$ such that $gx_0 \le f(x_0, y_0)$ And $f(y_0, x_0) \le gy_0$. then f and g have a coupled coincident point , that is there exist $(x, y) \in X \times X$ such that gx = f(x, y) and gy = f(y, x)

Proof: Given $x_0, y_0 \in X$ satisfying $gx_0 \leq f(x_0, y_0)$ and $f(y_0, x_0) \leq gy_{0,we}$ shall construct iterative sequence (x_n) and (y_n) in the following way; $f(X \times X) \subseteq g(X)$, we can choose

 $x_1, y_1 {\varepsilon} X$ such that $gx_1 = f(x_0, y_0)$ and $gy_1 = f(y_0, x_0).$ similarly we can choose

 $x_2, y_2 \in X$ Such that $gx_2 = f(x_1, y_1)$ and $gy_2 = f(y_1, x_1)$. Since f has the mixed g-manotone property, we conclude that $gx_0 \le gx_1 \le gx_2$ and $gy_2 \le gy_1 \le gy_0$, we get from above

 $gx_n=f(x_{n-1},y_{n-1})\leq gx_{n+1}=f(x_n,y_n)$ and $\qquad gy_{n+1}=f(y_n,x_n)\leq gy_n=f(y_{n-1},x_{n-1})$

If for some n_0 we have $(gx_{n0+1}, gy_{n0+1}) = (gx_{n0}, gy_{n0})$, then $f(x_{n0}, y_{n0}) = gx_{n0}$ and $f(y_{n0}, x_{n0}) = gy_{n0}$, that is f and g have a coincidence point. So we assume that $(gx_{n+1}, gy_{n+1}) \neq (gx_n, gy_n)$ for all $n \in \mathbb{N}$, Thus we have either

$$\begin{split} gx_{n+1} &= f(x_n, y_n) \neq gx_n \text{ or } gy_{n+1} = f(y_n, x_n) \neq gy_n, \\ \text{We define } s_n &= G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) \quad (2.2) \\ \text{for all } n \in \text{N.Due to the property (G2).we have } s_n > 0 \text{ for all} \\ n \in \text{N.By using inequality (2.1),} \\ & G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) = G(f(x_n, y_n), f(x_{n-1}, y_{n-1}), f(gx_{n-1}, gy_{n-1})) \end{split}$$

$$\begin{aligned} & = (f(x_{n}, y_{n}), f(y_{n-1}, x_{n-1}), f(gy_{n-1}, gx_{n-1})) \\ & + G(f(y_{n}, x_{n}), f(y_{n-1}, x_{n-1}), f(gy_{n-1}, gx_{n-1})) \\ & \leq [G(gx_{n}, gx_{n-1}, gx_{n-1}) + G(gy_{n}, gy_{n-1}, gy_{n-1})] \\ & -\phi[G(gx_{n}, gx_{n-1}, gx_{n-1}) + G(gy_{n}, gy_{n-1}, gy_{n-1})](2.3) \\ & s_{n} \leq s_{n-1} - \phi(s_{n-1}) \end{aligned}$$

Since $\emptyset(t) < \text{tfor all } t > 0$, it follows that s_n is monotone decreasing. Therefore, there is some $s \ge 0$ such that $\lim_{n \to \infty} s_n = s$.

Now, we assert that s = 0. Suppose, on contrary, that s > 0. Letting $n \to +\infty$ $s = \lim_{n \to +\infty} s_n \le \lim_{n \to +\infty} s - \emptyset(s) < s$

This is a contradiction. Thus s = 0. Hence

 $\lim_{n\to+\infty} s_n = \lim_{n\to+\infty} G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) = 0$ (2.5) Next we prove that $(gx_n), (gy_n)$ are Cauchy sequence in G metric space (X, G). suppose on contrary, that at least one of $(gx_n), (gy_n)$ is not a Cauchy sequence in (X,G). then there exist $\epsilon > 0$ and sequence of natural number (m_k) and (n_k) such that for every natural number k, $(m_k) > (n_k) \ge k$ and

$$\mathbf{r}_{k} = \mathbf{G}(\mathbf{g}\mathbf{x}_{m_{k}}\mathbf{g}\mathbf{x}_{n_{k'}}\mathbf{g}\mathbf{x}_{n_{k}}) + \mathbf{G}\left(\mathbf{g}\mathbf{y}_{m_{k'}}\mathbf{g}\mathbf{y}_{n_{k}}\mathbf{g}\mathbf{y}_{n_{k}}\right) \ge \epsilon$$
(2.6)

Now corresponding to (n_k) , we choose (m_k) to be smallest for which (2.6) holds. Hence

$$G(gx_{m_{k-1}},gx_{n_k},gx_{n_k}) + G(gy_{m_{k-1}},gy_{n_k}gy_{n_k}) < \epsilon$$

Using rectangular inequality and G₅, we get

$$\begin{aligned} \epsilon &\leq r_{k} \\ &\leq G(gx_{m_{k}}gx_{m_{k-1}},gx_{m_{k-1}}) + G(gx_{m_{k-1}},gx_{n_{k}},gx_{n_{k}}) \\ &+ G(gy_{m_{k}}gy_{m_{k-1}}gy_{m_{k-1}}) + G(gy_{m_{k-1}},gy_{n_{k}},gy_{n_{k}}) \\ &= G(gx_{m_{k-1}}gx_{n_{k}},gx_{n_{k}}) + G(gy_{m_{k-1}}gy_{n_{k}},gy_{n_{k}}) + s_{m_{k-1}} \\ &< \epsilon + s_{m_{k-1}} \end{aligned}$$
(2.7)

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016

Letting $k \to +\infty$ in the above inequality and using (2.6), we get (2.8) $\lim_{k\to\infty} r_k = \epsilon$ Again, by rectangle inequality, we have $\mathbf{r}_{k} = \mathbf{G}(\mathbf{g}\mathbf{x}_{m_{k}}\mathbf{g}\mathbf{x}_{n_{k}}, \mathbf{g}\mathbf{x}_{n_{k}}) + \mathbf{G}(\mathbf{g}\mathbf{y}_{m_{k}}\mathbf{g}\mathbf{y}_{n_{k}}\mathbf{g}\mathbf{y}_{n_{k}})$ $\leq G(gx_{m_{\nu}}gx_{m_{\nu+1}},gx_{m_{\nu+1}}) + G(gx_{m_{\nu+1}}gx_{n_{\nu+1}},gx_{n_{\nu+1}}) + G(gx_{n_{\nu+1}}gx_{n_{\nu}},gx_{n_{\nu}}) +$ $G(gy_{m_{\nu}}gy_{m_{\nu+1}},gy_{m_{\nu+1}}) + G(gy_{m_{\nu+1}}gy_{n_{\nu+1}},gy_{n_{\nu+1}}) + G(gy_{n_{\nu+1}}gy_{n_{\nu}},gy_{n_{\nu}}) +$ $= s_{n_{k}} + G(gx_{m_{k}}gx_{m_{k+1}},gx_{m_{k+1}}) + G(gy_{m_{k}}gy_{m_{k+1}},gy_{m_{k+1}})$ $+G(gx_{m_{k+1}}gx_{n_{k+1}},gx_{n_{k+1}}) + G(gy_{m_{k+1}}gy_{n_{k+1}},gy_{n_{k+1}})$ Using the fact that $G(x, y, y) \leq 2G(y, x, x)$ for any $x, y \in X$, we obtain $r_k \le s_{n_k} + 2 G(gx_{m_k}gx_{m_{k'}}gx_{m_{k+1}}) + 2G(gy_{m_k}gy_{m_{k'}}gy_{m_{k+1}})$ $+G(gx_{m_{k+1}}gx_{n_{k+1}},gx_{n_{k+1}})+G(gy_{m_{k+1}}gy_{n_{k+1}},gy_{n_{k+1}})$ $= s_{n_{k}} + 2s_{m_{k}} + G(gx_{m_{k+1}}gx_{n_{k+1}}, gx_{n_{k+1}}) + G(gy_{m_{k+1}}gy_{n_{k+1}}, gy_{n_{k+1}})$ Next, Using inequality (2.1), we have $G(gx_{m_{k+1}}gx_{n_{k+1}},gx_{n_{k+1}}) + G(gy_{m_{k+1}}gy_{n_{k+1}},gy_{n_{k+1}})$ $= G(f(x_{m_{\nu}}y_{m_{\nu}}), f(x_{n_{\nu}}y_{n_{\nu}}), f(x_{n_{\nu}}y_{n_{\nu}})) + G(f(y_{n_{\nu}}x_{n_{\nu}}), f(y_{m_{\nu}}x_{m_{\nu}}), f(y_{m_{\nu}}x_{m_{\nu}}))$ $\leq \left(G\left(g x_{m_k} g x_{n_k'} g x_{n_k} \right) + G\left(g y_{m_k} g y_{n_k} g y_{n_k} \right) \right)$ $- \phi \left(G \left(g x_{m_k} g x_{n_k}, g x_{n_k} \right) + G \left(g y_{m_k} g y_{n_k} g y_{n_k} \right) \right)$ $\leq r_k - \emptyset(r_k)$ (2.9)By using (2.5), (2.8) and letting $k \to \infty$, we get, $\varepsilon \leq \lim_{k \to \infty} r_k - \emptyset(r_k) < \varepsilon$

This is contradiction. So (gx_n) , (gy_n) are Cauchy sequence in G metric space (X,G).Since (X,G) is complete then there exist x, y \in X such that (gx_n) and (gy_n) are G-convergent to x and y.

from proposition 1.4, we have

$$\begin{split} &\lim_{n \to \infty} G(gx_n, x, x) = 0 \quad \text{and} \quad \lim_{n \to \infty} G(gy_n, y, y) = 0 \\ &\text{Using continuity of g, we get from proposition 1.7,} \\ &\lim_{n \to \infty} G(g(gx_n), gx, gx) = 0 \quad \text{and} \quad \lim_{n \to \infty} G(g(gy_n), gy, gy) = 0 \\ &(2.10) \end{split}$$

Since $gx_{n+1} = f(x_n, y_n)$ and $gy_{n+1} = f(y_n, x_n)$, employing the commutativity of f and g,

 $g(gx_{n+1}) = g(f(x_n, y_n)) = f((gx_n, gy_n))$ $g(gy_{n+1}) = g(f(y_n, x_n)) = g(f(gy_n, gx_n)). \quad (2.11)$

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016

Now we shall show that f(x, y) = gx and f(y, x) = gy

The mapping f is continuous, and since the sequence (gx_n) and (gy_n) are respectively G-convergent to x and y, Using definition 1.9, the sequence $(f(gx_n, gy_n))$ is G-convergent to f(x, y). Therefore from (2.11), $(g(gx_{n+1}))$ is G-convergent to f(x, y) By uniqueness of the limit and using (2.10), we have f(x, y) = gx. Similarly, we can show that f(y, x) = gy. Hence (x, y) is a coupled coincidence point of f and g. This completes the proof.

Theorem-2.2: Let (X, \leq) be a partially ordered set and G be a G-metric on X such that (X, G, \leq) is a complete G-metric. Suppose that there exist $\Phi \epsilon \Phi$, f:X x X \rightarrow X and g : X \rightarrow X such that

 $[G(f(x,y),f(u,v),f(w,z))] + [G(f(y,x),f(v,u),f(z,w))] \le$

[G(gx, gu, gw) + G(gy, gv, gz)]

 $-\Phi [G(gx, gu, gw) + G(gy, gv, gz)]$ (2.1)

For all x, y, u, v, w, $z \in X$ with $gw \le gu \le gx$ and $gy \le gv \le gz$. suppose also (g(x), G) is complete, f has the mixed g-monotone property, $f(X \times X) \subseteq g(x)$. If there exist $x_0, y_0 \in X$ such that $gx_0 \le f(x_0, y_0)$ And $f(y_0, x_0) \le gy_0$. then f and g have a coupled coincident point.

Proof: proceeding exactly as in Theorem 2.1.We have $(gx_n)and(gy_n)$ are Cauchy sequence in the complete G-metric spaces(g(x), G). Then there exist $x, y \in X$ such that

 $g_{x_n} \rightarrow gx \text{ and } g_{y_n} \rightarrow gy.$

Since (gx_n) is non – decreasing and (gy_n) is non – increasing

Then we have $g_{x_n} \leq g_x$ and $gy \leq g_{y_n}$ for all $n \geq 0$. If $g_{x_n} = g_x$ and $gy = g_{y_n}$ for some $n \geq 0$,

Then $gx = gx_n \le gx_{n+1} \le gx = gx_n$ and $gy = gy_{n+1} \le gy_n \le gy$, which implies that $gx_n = gx_{n+1} = f(x_n, y_n)$ and $gy_n = gy_{n+1} = f(y_n, x_n)$, that is a couple coincidence point of f and g. then we assume that $g(x_n, y_n) \neq (gx, gy)$ for all $n \ge 0$.

Then by rectangle inequality ,we have $G(f(x,y), gx, gx) + G(f(y,x), gy, gy) \leq G(f(x,y), gx_{n+1}, gx_{n+1}) + G(gx_{n+1}, gx, gx) + G(f(y,x), gy_{n+1}, gy_{n+1}) + G(gy_{n+1}, gy, gy) = G(f(x,y), f(x_n, y_n), f(x_n, y_n)) + G(gx_{n+1}, gx, gx) + G(f(y, x), f(y_n, x_n), f(y_n, x_n)) + G(gy_{n+1}, gy, gy) \leq \{G(gx, gx_n, gx_n) + G(gy, gy_n, gy_n)\} + \{G(gx_{n+1}, gx, gx) + G(gy_{n+1}, gy, gy)\} - \Phi\{G(gx, gx_n, gx_n) + G(gy, gy_n, gy_n)\} + \{G(gx_{n+1}, gx, gx) + G(gy_{n+1}, gy, gy)\}$ As $n \to \infty$ in above inequality, we have G(f(x, y), gx, gx) + G(f(y, x), gy, gy) = 0, Which implies that gy = f(y, y) and gy = f(y, y). Hence, (y, y) is

Which implies that gx = f(x, y) and gy = f(y, x). Hence (x, y) is a coupled coincident point of f and g.

REFERENCES

1. Abbas, M, Sintunavarat, W, Kumam, P: Coupled fixed point of generalized contractive mappings on partially ordered Gmetric spaces. Fixed Point Theory Appl. 2012, 31 (2012)

2. Aydi, H, Damjanovi'c, B, Samet, B, Shatanawi, W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 54, 2443-2450 (2011)

3. Aydi, H, Karapınar, E, Shatanawi, W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, Article ID 314279 (2012)

4. Aydi, H, Karapinar, E, Shatanawi, W: Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012, 101 (2012)

5. Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for (ψ, ϕ) -weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298-309 (2012)

6. Banach, S: Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam.Math. 3, 133-181 (1922) 7. Berinde, V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 74, 7347-7355 (2011)

8. Berinde, V: Coupled coincidence point theorems for mixed monotone nonlinear operators.

9. Choudhury, BS, Maity, P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54(1-2), 73-79 (2011)

10. Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73, 2524-2531 (2010)

11. Ciri'c, L, Lakshmikantham, V: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70, 4341-4349 (2009)

12. Ding, H-S, Li, L: Coupled fixed point theorems in partially ordered cone metric spaces. Filomat 25(2), 137-149 (2011)

13. Frechet, M: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1-74 (1906).doi:10.1007/BF03018603

14. Fenwick, DH, Batycky, RP: Using metric space methods to analyse reservoir uncertainty. In: Proceedings of the 2011

15. Gnana-Bhaskar, T, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications.Nonlinear Anal. 65, 1379-1393 (2006)

16. Karapınar, E, Luong, NV, Thuan, NX, Hai, TT: Coupled coincidence points for mixedmonotone operators in partially ordered metric spaces. Arabian Journal of Mathematics 1, 329-339 (2012)

17. Karapınar, E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 59,3656-3668 (2010)

18. Karapınar, E: Couple fixed point on cone metric spaces.Gazi University Journal of Science 24, 51-58 (2011)

19. Karapınar et al.: On coupled fixed point theorems on partially ordered G-metric spaces. Journal of Inequalities and Applications 2012 2012:200. 20. Luong, NV, Thuan, NX: Coupled fixed point theorems in partially ordered G-metric spaces. Math. Comput. Model. 55,1601-1609 (2012)

21. Mustafa, Z, Aydi, H, Karapınar, E: On common fixed points in image-metric spaces using (E.A) property. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.03.051

22. Mustafa, Z, Obiedat, H, Awawdeh, F: Some fixed point theorem for mapping on complete G-metric spaces. Fixed Point Theory Appl. 2008, Article ID 189870 (2008)

22. Mustafa, Z, Khandaqji, M, Shatanawi, W: Fixed point results on complete G-metric spaces. Studia Sci. Math. Hung. 48, 304-319 (2011)

23. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)

24. Mustafa, Z, Shatanawi, W, Bataineh, M: Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009)

25. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)

26. Nieto, JJ, Lopez, RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005)

27. Shatanawi, W: Fixed point theory for contractive mappings satisfying _-maps in G-metric spaces. Fixed Point Theory Appl. 2010, Article ID 181650 (2010)

28. Shatanawi, W: Some fixed point theorems in ordered Gmetric spaces and applications. Abstr. Appl. Anal. 2011,Article ID 126205 (2011)

29. Shatanawi, W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 40(3), 441-447 (2011)

30. Shatanawi, W, Abbas, M, Nazir, T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011, 80 (2011)

31. Tahat, N, Aydi, H, Karapınar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps satisfying