Coupled Fixed Point Theorem on Partially Ordered G-metric Space

MADHU SHRIVASTAVA
TIT Group of Institution, Bhopal, India

Dr. K. QURESHI
Ret. Additional Director, Bhopal, India

Dr. A. D. SINGH
Govt. M. V. M. College, Bhopal, India

Abstract:
Ayedi et al. established coupled coincidence and coupled common fixed point result. Recently Erdal Karapinar, Billur Kayamakcalan and Kenan Tas [19] improved and extend the coupled fixed point of Ayedi et al.[2] Now we prove some recent coupled fixed point theorem in partially ordered G-metric spaces.

Key words: Coupled Fixed Point Theorem, Partially Ordered G-metric Space

INTRODUCTION AND PRELIMINARY:

One of the simplest and the most useful result in the fixed point theory is a Banach Contraction Principal [6]. These principal has been generalized in different direction in different spaces by mathematicians.

In [2] Ayedi et al. established coupled coincidence and coupled common fixed point results for a mixed g-monotone mapping satisfying Non-linear contraction in partially ordered G-metric spaces. These result generalize those of Choudhary
Coupled Fixed Point Theorem on Partially Ordered G-metric Space

and Maity [9]. Consequently Erdal Karapinar, Billur Kaymakcalan and Kenan Tas improved the result of Ayedi et al.

Definition 1.1 Let X be a non-empty set, and G : X × X × X → R+ be a function satisfying the following properties:

(G1) G(x, y, z) = 0, if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x ≠ y,

(G3) G(x, y, z) ≤ G(x, x, x) for all x, y, z ∈ X with y ≠ z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specially, a G-metric on X, and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

\[dG(x, y) = G(x, y, y) + G(y, x, x), \]

for all x, y ∈ X. (1.1)

Example 1.2 Let (X, d) be a metric space. The function G: X×X×X→[0,+∞), defined by

\[G(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\} \]

or

\[G(x, y, z) = d(x, y) + d(y, z) + d(z, x), \]

for all x, y, z ∈ X, is a G-metric on X.

Definition 1.3 Let (X,G) be a G-metric space, and let \(\{x_n\} \) be a sequence of points of

We say that \((x_n) \) is G-convergent to x ∈ X if \(\lim_{n,m \to +\infty} G(x, x_n, x_m) = 0 \), that is, for any ε > 0, there exists N ∈ N such that \(G(x, x_n, x_m) < \varepsilon \), for all n, m ≥ N. We call x the limit of the sequence and write \(x_n \to x \) or \(\lim_{n \to +\infty} x_n = x \).

Proposition 1.4 Let (X,G) be a G-metric space. The following are equivalent:
(1) \(\{x_n\} \) is \(G \)-convergent, to \(x \)
(2) \(G(x_n, x_n, x) \to 0 \) as \(n \to +\infty \),
(3) \(G(x_n, x, x) \to 0 \) as \(n \to +\infty \),
(4) \(G(x_n, x_n, x) \to 0 \) as \(n, m \to +\infty \).

Definition 1.5 Let \((X, G)\) be a \(G \)-metric space. A sequence \(\{x_n\} \) is called a \(G \)-Cauchy sequence if, for any \(\varepsilon > 0 \), there is \(N \in \mathbb{N} \) such that \(G(x_n, x_m, x_l) < \varepsilon \) for all \(m, n, l \geq N \), that is, \(G(x_n, x_m, x_l) \to 0 \) as \(n, m, l \to +\infty \).

Proposition 1.6 Let \((X, G)\) be a \(G \)-metric space. Then the following are equivalent:
(1) The sequence \(\{x_n\} \) is \(G \)-Cauchy,
(2) For any \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(G(x_n, x_m, x_l) < \varepsilon \), for all \(m, n \geq N \).

Proposition 1.7 Let \((X, G)\) be a \(G \)-metric space. A mapping \(f : X \to X \) is \(G \)-continuous at \(x_0 \) if and only if it is \(G \)-sequentially continuous at \(x_0 \), that is, whenever \(\{x_n\} \) is \(G \)-convergent to \(x_0 \), the sequence \(\{f(x_n)\} \) is \(G \)-convergent to \(f(x_0) \).

Definition 1.8 A \(G \)-metric space \((X, G)\) is called \(G \)-complete if every \(G \)-Cauchy sequence is \(G \)-convergent in \((X, G)\).

Definition 1.9 Let \((X, G)\) be a \(G \)-metric space. A mapping \(F : X \times X \to X \) is said to be continuous if for any two \(G \)-convergent sequences \(\{x_n\} \) and \(\{y_n\} \) converging to \(x, y \) respectively, \(\{F(x_n, y_n)\} \) is \(G \)-convergent to \(F(x, y) \).

Let \((X, \leq)\) be a partially ordered set and \((X, G)\) be a \(G \)-metric space, \(g : X \to X \) be a mapping.

A partially ordered \(G \)-metric space, \((X, G, \leq)\), is called \(g \)-ordered complete if for each convergent sequence \(\{x_n\}_{n=0}^\infty \subseteq X \), the following conditions hold:
(1) if \(\{x_n\} \) is a non-increasing sequence in \(X \) such that \(x_n \to x \) implies \(gx \leq gx_n \) for all \(n \in \mathbb{N} \),
(2) if \(\{y_n\} \) is a non-decreasing sequence in \(X \) such that \(y_n \to y \) implies \(gy \geq g y_n \), \(\forall n \in \mathbb{N} \).

Moreover, a partially ordered \(G \)-metric space, \((X,G, \leq)\), is called ordered complete when \(g \) is equal to identity mapping in the above conditions (1) and (2).

Definition 1.10 An element \((x, y) \in X \times X\) is said to be a coupled fixed point of the mapping \(F : X \times X \to X \) if \(F(x, y) = x \) and \(F(y, x) = y \).

Definition 1.11 An element \((x, y) \in X \times X\) is called a coupled coincidence point of a mapping \(F : X \times X \to X \) and \(g : X \to X \) if \(F(x, y) = g(x) \), \(F(y, x) = g(y) \).

Moreover, \((x, y) \in X \times X\) is called a common coupled coincidence point of \(F \) and \(g \) if \(F(x, y) = g(x) = x \), \(F(y, x) = g(y) = y \).

Definition 1.12 Let \(F : X \times X \to X \) and \(g : X \to X \) be mappings. The mappings \(F \) and \(g \) are said to commute if \(g(F(x, y)) = F(g(x), g(y)) \), for all \(x, y \in X \).

Definition 1.13 Let \((X, \leq)\) be a partially ordered set and \(F : X \times X \to X \) be a mapping.

Then \(F \) is said to have mixed monotone property if \(F(x, y) \) is monotone non-decreasing in \(x \) and is monotone non-increasing in \(y \), that is, for any \(x, y \in X \),

\[x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y), \text{ for } x_1, x_2 \in X, \]

And \(y_1 \leq y_2 \Rightarrow F(x, y_2) \leq F(x, y_1) \), for \(y_1, y_2 \in X \).

Definition 1.14 Let \((X, \leq)\) be a partially ordered set and \(F : X \times X \to X \) and \(g : X \to X \) be two mappings. Then \(F \) is said to have mixed \(g \)-monotone property if \(F(x, y) \) is monotone \(g \)-non-decreasing in \(x \) and is monotone \(g \)-non-increasing in \(y \), that is, for any \(x, y \in X \),

\[g(x_1) \leq g(x_2) \Rightarrow F(x_1, y) \leq F(x_2, y), \text{ for } x_1, x_2 \in X, \] and \((1.2) \)

\[g(y_1) \leq g(y_2) \Rightarrow F(x, y_2) \leq F(x, y_1), \text{ for } y_1, y_2 \in X. \] (1.3)
Let \emptyset denote the set of functions $\emptyset^{-1} : [0, \infty) \rightarrow [0, \infty)$ satisfying
\begin{align*}
& (a) \quad \emptyset^{-1}(\{0\}) = \{0\}, \\
& (b) \quad \emptyset(t) < t \text{ for all } t > 0, \\
& (c) \quad \lim_{r \to t^+} \emptyset(r) < t \text{ for all } t > 0.
\end{align*}

Main Result:

Theorem 2.1 Let (X, \preceq) be a partially ordered set and G be a G-metric on X such that (X, G) is a complete G-metric. Suppose that there exist $\Phi \in \Phi$, $f : X \times X \rightarrow X$ and $g : X \rightarrow X$ such that
\[G(f(x, y), f(u, v), f(w, z)) + G(f(y, x), f(v, u), f(z, w)) \leq G(g(x, y), g(u, v), g(w, z)) - \Phi G(g(x, y), g(u, v), g(w, z)) \tag{2.1} \]

For all $x, y, u, v, w, z \in X$ with $g(x) \preceq g(y) \preceq g(z)$, suppose also that f is continuous and has the mixed g-monotone property, $f(X \times X) \subseteq g(X)$ and g is continuous and commutes with f. If there exist $x_0, y_0 \in X$ such that $g(x_0) \preceq f(x_0, y_0)$ and $f(y_0, x_0) \preceq g(y_0)$, then f and g have a coupled coincident point, that is there exist $(x, y) \in X \times X$ such that $gx = f(x, y)$ and $gy = f(y, x)$

Proof: Given $x_0, y_0 \in X$ satisfying $gx_0 \preceq f(x_0, y_0)$ and $f(y_0, x_0) \preceq g(y_0)$, we shall construct iterative sequence (x_n) and (y_n) in the following way: $f(X \times X) \subseteq g(X)$, we can choose $x_1, y_1 \in X$ such that $gx_1 = f(x_0, y_0)$ and $gy_1 = f(y_0, x_0)$. Similarly we can choose $x_2, y_2 \in X$ such that $gx_2 = f(x_1, y_1)$ and $gy_2 = f(y_1, x_1)$. Since f has the mixed g-monotone property, we conclude that $gx_0 \preceq gx_1 \preceq gx_2$ and $gy_0 \preceq gy_1 \preceq gy_2$. We get from above
\[gx_n = f(x_{n-1}, y_{n-1}) \leq gx_{n+1} = f(x_n, y_n) \quad \text{and} \quad gy_{n+1} = f(y_n, x_n) \leq gy_n = f(y_{n-1}, x_{n-1}) \]

If for some n_0 we have $(gx_{n_0+1}, gy_{n_0+1}) = (gx_{n_0}, gy_{n_0})$, then
\[f(x_{n_0}, y_{n_0}) = gx_{n_0} \text{ and } f(y_{n_0}, x_{n_0}) = gy_{n_0} \]

that is f and g have a coincidence point. So we assume that $(gx_{n+1}, gy_{n+1}) \neq (gx_n, gy_n)$ for all $n \in \mathbb{N}$, Thus we have either
Coupled Fixed Point Theorem on Partially Ordered G-metric Space

We define \(s_n = G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) \) \((2.2)\)
for all \(n \in \mathbb{N} \). Due to the property (G2), we have \(s_n > 0 \) for all \(n \in \mathbb{N} \).

By using inequality (2.1),
\[
G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) = G(f(x_n, y_n), f(x_{n-1}, y_{n-1}), f(gx_{n-1}, gy_{n-1})) \\
+ G(f(y_n, x_n), f(y_{n-1}, x_{n-1}), f(gy_{n-1}, gx_{n-1})) \\
\leq [G(gx_n, gx_{n-1}, gx_{n-1}) + G(gy_n, gy_{n-1}, gy_{n-1})] \\
- \theta[G(gx_n, gx_{n-1}, gx_{n-1}) + G(gy_n, gy_{n-1}, gy_{n-1})] \quad (2.3)
\]
so that
\[
s_n \leq s_{n-1} - \theta(s_{n-1}) \quad (2.4)
\]

Since \(\theta(t) < t \) for all \(t > 0 \), it follows that \(s_n \) is monotone decreasing. Therefore, there is some \(s \geq 0 \) such that \(\lim_{n \to \infty} s_n = s \).

Now, we assert that \(s = 0 \). Suppose, on contrary, that \(s > 0 \).

Letting \(n \to +\infty \),
\[
s = \lim_{n \to +\infty} s_n \leq \lim_{n \to +\infty} s - \theta(s) < s
\]

This is a contradiction. Thus \(s = 0 \). Hence
\[
\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} G(gx_{n+1}, gx_n, gx_n) + G(gy_{n+1}, gy_n, gy_n) = 0 \quad (2.5)
\]

Next we prove that \((gx_n),(gy_n)\) are Cauchy sequence in G-metric space \((X, G)\). Suppose on contrary, that at least one of \((gx_n),(gy_n)\) is not a Cauchy sequence in \((X, G)\). Then there exists \(\epsilon > 0 \) and sequence of natural number \((m_k),(n_k)\) such that for every natural number \(k \), \((m_k) > (n_k) \geq k \) and
\[
r_k = G(gx_{m_k}, gx_{m_k}, gx_{n_k}) + G(gy_{m_k}, gy_{n_k}, gy_{n_k}) \geq \epsilon \quad (2.6)
\]

Now corresponding to \((n_k)\), we choose \((m_k)\) to be smallest for which (2.6) holds. Hence
\[
G(gx_{m_k-1}, gx_{n_k}, gx_{n_k}) + G(gy_{m_k-1}, gy_{n_k}, gy_{n_k}) < \epsilon
\]

Using rectangular inequality and \(G_5 \), we get
\[
\epsilon \leq r_k \\
\leq G(gx_{m_k}, gx_{m_k-1}, gx_{m_k-1}) + G(gx_{m_k-1}, gx_{n_k}, gx_{n_k}) \\
+ G(gy_{m_k}, gy_{m_k-1}, gy_{m_k-1}) + G(gy_{m_k-1}, gy_{n_k}, gy_{n_k}) \\
= G(gx_{m_k-1}, gx_{n_k}, gx_{n_k}) + G(gy_{m_k-1}, gy_{n_k}, gy_{n_k}) + s_{m_k-1} \\
< \epsilon + s_{m_k-1} \quad (2.7)
\]
Letting $k \to +\infty$ in the above inequality and using (2.6), we get
\[\lim_{k \to \infty} r_k = \epsilon \quad (2.8) \]
Again, by rectangle inequality, we have
\[
\begin{align*}
r_k &= G\left(g x_{m_k} g x_{m_k}, g x_{n_k} \right) + G\left(g y_{m_k} g y_{n_k} g y_{n_k} \right) \\
& \leq G\left(g x_{m_k} g x_{m_k+1}, g x_{m_k+1} \right) + G\left(g x_{m_k+1} g x_{m_k+1}, g x_{n_k} \right) + \\
& \quad + G\left(g y_{m_k} g y_{m_k+1}, g y_{n_k+1} \right) + G\left(g y_{m_k+1} g y_{n_k+1}, g y_{n_k+1} \right) \\
& = s_{n_k} + 2 G\left(g x_{m_k+1}, g x_{n_k+1} \right) + G\left(g y_{m_k+1}, g y_{n_k+1} \right) + G\left(g y_{m_k}, g y_{n_k+1}, g y_{n_k+1} \right) \\
& \quad + G\left(g x_{m_k+1}, g x_{n_k+1}, g x_{n_k} \right) + G\left(g y_{m_k+1}, g y_{n_k+1}, g y_{n_k} \right)
\end{align*}
\]
Using the fact that $G(x, y, z) \leq 2G(y, x, x)$ for any $x, y \in X$, we obtain
\[
\begin{align*}
r_k & \leq s_{n_k} + 2 G\left(g x_{m_k} g x_{m_k}, g x_{m_k+1} \right) + 2 G\left(g y_{m_k} g y_{m_k}, g y_{m_k+1} \right) \\
& \quad + G\left(g x_{m_k+1} g x_{n_k+1}, g x_{n_k}, g y_{m_k+1} \right) + G\left(g y_{m_k+1} g y_{n_k+1}, g y_{n_k+1}, g y_{n_k+1} \right) \\
& \quad + G\left(g x_{m_k+1}, g x_{n_k+1}, g x_{n_k} \right) + G\left(g y_{m_k+1}, g y_{n_k+1}, g y_{n_k} \right)
\end{align*}
\]
Next, Using inequality (2.1), we have
\[
\begin{align*}
& G\left(g x_{m_k+1} g x_{n_k+1}, g x_{n_k+1} \right) + G\left(g y_{m_k+1} g y_{n_k+1}, g y_{n_k+1} \right) \\
& = G\left(f(x_{m_k+1} g x_{n_k}), f(x_{n_k} g y_{n_k}), f(x_{n_k} g y_{n_k}) \right) + G\left(f(y_{n_k} g x_{n_k}), f(y_{n_k} g x_{n_k}), f(y_{n_k} g y_{n_k}) \right) \\
& \leq G\left(g x_{m_k} g x_{n_k}, g x_{n_k} \right) + G\left(g y_{m_k} g y_{n_k} g y_{n_k} \right) \\
& \quad - \phi\left(G\left(g x_{m_k} g x_{n_k}, g x_{n_k} \right) + G\left(g y_{m_k} g y_{n_k} g y_{n_k} \right) \right)
\end{align*}
\]
\[
\leq r_k - \phi(r_k) \\
(2.9)
\]
By using (2.5), (2.8) and letting $k \to \infty$, we get,
\[\epsilon \leq \lim_{k \to \infty} r_k - \phi(r_k) < \epsilon \]
This is contradiction. So $(g x_n), (g y_n)$ are Cauchy sequence in G metric space (X, G). Since (X, G) is complete then there exist $x, y \in X$ such that $(g x_n)$ and $(g y_n)$ are G-convergent to x and y.

From proposition 1.4, we have
\[
\begin{align*}
\lim_{n \to \infty} G(g x_n, x, x) &= 0 \quad \text{and} \quad \lim_{n \to \infty} G(g y_n, y, y) = 0
\end{align*}
\]
Using continuity of g, we get from proposition 1.7,
\[
\begin{align*}
\lim_{n \to \infty} G(g(g x_n), g x, g x) &= 0 \quad \text{and} \quad \lim_{n \to \infty} G(g(g y_n), g y, g y) = 0 \\
(2.10)
\end{align*}
\]
Since $g x_{n+1} = f(x_n, y_n)$ and $g y_{n+1} = f(y_n, x_n)$, employing the commutativity of f and g,
\[
\begin{align*}
g(g x_{n+1}) &= g(f(x_n, y_n)) = f((g x_n, g y_n)) \\
g(g y_{n+1}) &= g(f(y_n, x_n)) = g(f(g y_n, g x_n)). \\
(2.11)
\]
Now we shall show that $f(x, y) = gx$ and $f(y, x) = gy$.
The mapping f is continuous, and since the sequence (gx_n) and (gy_n) are respectively G-convergent to x and y, Using definition 1.9, the sequence $(f(gx_n, gy_n))$ is G-convergent to $f(x, y)$. Therefore from (2.11), $(g(gx_{n+1}))$ is G-convergent to $f(x, y)$. By uniqueness of the limit and using (2.10), we have $f(x, y) = gx$. Similarly, we can show that $f(y, x) = gy$. Hence (x, y) is a coupled coincidence point of f and g. This completes the proof.

Theorem-2.2: Let (X, \leq) be a partially ordered set and G be a G-metric on X such that (X, G, \leq) is a complete G-metric. Suppose that there exist $\Phi \subseteq \Phi$, $f : X \times X \rightarrow X$ and $g : X \rightarrow X$ such that

$$[G(f(x, y), f(u, v), f(w, z))] + [G(f(y, x), f(v, u), f(z, w))] \leq [G(gx, gu, gw) + G(gy, gv, gz)] - \Phi [G(gx, gu, gw) + G(gy, gv, gz)] \quad (2.1)$$

For all $x, y, u, v, w, z \in X$ with $gw \leq gu \leq gx$ and $gy \leq gv \leq gz$. Suppose also $(g(x), G)$ is complete, f has the mixed g-monotone property, $f(X \times X) \subseteq g(x)$. If there exist $x_0, y_0 \in X$ such that $gx_0 \leq f(x_0, y_0)$ and $f(y_0, x_0) \leq gy_0$, then f and g have a coupled coincidence point.

Proof: proceeding exactly as in Theorem 2.1. We have (gx_n) and (gy_n) are Cauchy sequence in the complete G-metric spaces $(g(x), G)$. Then there exist $x, y \in X$ such that $gx_n \rightarrow gx$ and $gy_n \rightarrow gy$.

Since (gx_n) is non-decreasing and (gy_n) is non-increasing, then we have $gx_n \leq gx$ and $gy_n \leq gy$ for all $n \geq 0$. If $gx_n = gx$ and $gy_n = gy$ for some $n \geq 0$, then $gx = gx_n \leq gx_{n+1} \leq gx = gx_n$ and $gy = gy_{n+1} \leq gy_n \leq gy$, which implies that $gx_n = gx_{n+1} = f(x_n, y_n)$ and $gy_n = gy_{n+1} = f(y_n, x_n)$, that is a coupled coincidence point of f and g. Then we assume that $g(x_n, y_n) \neq (gx, gy)$ for all $n \geq 0$.

EUROPEAN ACADEMIC RESEARCH - **Vol. IV, Issue 3 / June 2016**

2298
Then by rectangle inequality, we have
\[
G(f(x, y), gx, gx) + G(f(y, x), gy, gy) \leq G(f(x, y), gx_{n+1}, gx_{n+1}) + G(gx_{n+1}, gx, gx) \\
+ G(f(y, x), gy_{n+1}, gy_{n+1}) + G(gy_{n+1}, gy, gy) \\
= G(f(x, y), f(x_n, y_n), f(x_n, y_n)) + G(gx_{n+1}, gx, gx) \\
+ G(f(y, x), f(y_n, x_n), f(y_n, x_n)) + G(gy_{n+1}, gy, gy) \\
\leq \{G(gx, gx_{n}, gx_{n}) + G(gy, gy_{n}, gy_{n})\} + \\
\{G(gx_{n+1}, gx, gx) + G(gy_{n+1}, gy, gy)\} \\
- \Phi\{G(gx, gx_{n}, gx_{n}) + G(gy, gy_{n}, gy_{n})\} + \\
\{G(gx_{n+1}, gx, gx) + G(gy_{n+1}, gy, gy)\}
\]

As \(n \to \infty \) in above inequality, we have
\[
G(f(x, y), gx, gx) + G(f(y, x), gy, gy) = 0,
\]
Which implies that \(gx = f(x, y) \) and \(gy = f(y, x) \). Hence \((x, y)\) is a coupled coincident point of \(f \) and \(g \).

REFERENCES

8. Berinde, V: Coupled coincidence point theorems for mixed monotone nonlinear operators.
12. Ding, H-S, Li, L: Coupled fixed point theorems in partially ordered cone metric spaces. Filomat 25(2), 137-149 (2011)
31. Tahat, N, Aydi, H, Karapinar, E, Shatanawi, W: Common fixed points for single-valued and multi-valued maps satisfying