

10493

ISSN 2286-4822

www.euacademic.org

EUROPEAN ACADEMIC RESEARCH

Vol. IV, Issue 12/ March 2017

Impact Factor: 3.4546 (UIF)

DRJI Value: 5.9 (B+)

Security Evaluation of CSRF Protection

Mechanisms

EDNA OGARI

 Prof. WAWERU MWANGI

 Dr. AGNESS MINDILA

Jomo Kenyatta University of Agriculture and Technology

 Nairobi, Kenya

Abstract:

 In a cross site request forgery attack, the trust of a web

application in its authenticated users is compromised, thereby

allowing the intruder to make arbitrary HTTP requests on behalf of a

victim user. The challenge has been that web applications classically

act upon such requests without verifying that the performed actions are

undeniably intended. This means that if the victim is authenticated, a

successful cross site request forgery attack effectively circumvents the

underlying authentication mechanism. Depending on the web

application that is being exploited, the attacker can post messages or

send mails in the name of the victim, or even change the victim’s login

credentials such as name and password. Legitimate users will

therefore lose their integrity over the website when the Cross site

request forgery takes place. Over the years, researchers have proposed a

number of techniques for protection against cross site request forgery.

Such methods include the referrer HTTP Header, Custom HTTP

header, Origin Header, client site proxy, Browser plug-in and Random

Token Validation. This paper sought to investigate the security

features of the existing cross site request forgery prevention techniques

to determine whether they truly protect the much needed protection.

The survey results indicated that these existing solutions are not so

immune to various attacks. Therefore, these applications employing

these solutions are partially protected. This paper therefore proposes

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10494

an application programming interface as the probable solution to these

attacks.

Key words: Cross site request forgery, application programming

interfaces, CSRF prevention techniques.

I. INTRODUCTION

Cross-Site Request Forgery (CSRF) is an attack where a

malicious website sends a request to a web application that a

user is already authenticated against from a different website.

Employing this attack, an intruder gains access to

functionalities in a target web application through the victim's

already authenticated browser. According to Sentamilselvan et

al.,(2013), the CSRF targets include web applications such as

social media, in-browser email clients, online banking and web

interfaces for network devices.

In these attacks, an intruder exploits how the target web

application manages the authentication process (Ramarao,

2009). For this to be successful, the victim must be

authenticated against the target site. For instance, if

edna.com has an online banking website that is vulnerable to

CSRF, then if intruder X visits a page containing a CSRF

attack on edna.com but X is not currently logged in, nothing

occurs. On the other hand, provided X is logged in, the requests

in the attack will be executed as if they were actions that X had

intended to take.

The impact of successful cross site request forgeries is

restricted to the capabilities exposed by the vulnerable

application. Rob (2016) explains that these attacks could result

in a transfer of funds, changing a password, or purchasing an

item in the victim’s context. Effectively, using CSRF attacks, an

intruder is able to make a target system carry out activities on

the target's browser without the knowledge of the victim.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10495

II. CSRF PREVENTION TECHNIQUES AND THEIR

WEAKNESSES

A. Client-Side Proxy

Ramarao et al., (2009) presented a client-side proxy solution

that could detect and avert CSRF attacks using img element or

other HTML elements which are employed to access the graphic

images for the webpage. This method is able to inspect and

modify client requests as well as the application’s replies

automatically. In so doing, applications with the secret token

validation technique could transparently be extended.

The setbacks of this method are that if a proxy is

compromised, then all sensitive information will lost as well.

Moreover as Sentamilselvan (2013) point out, the technique

does not have the ability to detect login CSRF.

B. POST Method

Another common technique for mitigating cross site request

forgeries is the utilization of POST form submission method

instead of GET parameters. However, as Neil (2015) point out,

this approach only raises the bar for the attacker, as it closes

certain attack vectors such as the use of image tags, but does

not adequately prevent these attacks. Moreover, completely

doing away with the use of GET parameters is not always

possible as this may result in applications that are more

cumbersome for users to navigate and more difficult for

developers to implement.

C. Client Side Browser Plug-In

This method, implemented as an extension to the Firefox web

browser, can protect users from certain types of CSRF attacks

(Dav et al., 2016). This plug-in intercepts every HTTP request

and decides whether it should be allowed or not. The decision

process is based on the following criteria: any request that is

not a POST request is allowed; if the requesting site and target

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10496

site fall under the same-origin policy, the request is allowed; if

the requesting site is allowed to make a request to the target

site using Adobe’s cross-domain policy, the request is allowed; if

a request is rejected, the user is alerted that the request has

been blocked using a familiar interface, such as the one used

by Firefox’s popup blocker.

Luca et al., (2016) discuss that this gives the user the

option of adding the site to a white list. The setback is that

users will need to download and install this extension for it to

be effective against CSRF attacks.

D. HTTP Referrer Checking

According to Neil (2015), this is an effective countermeasure in

circumstances where the web application relies on its

correctness. It works by maintaining a white list of accepted

referrers, thereby enabling applications to figure out requests

initiated due to cross site request attacks, and therefore not to

carry out the requested transactions. Unfortunately,

configurations can be carried out on modern browsers,

permitting the sending of empty or even arbitrary values for

this header (Lance, 2016). Moreover, sending the referrer

header is dejected since during this sending process, sensitive

information may be leaked to third parties.

Another challenge is that when classifying requests with

an empty referrer header as valid, it would become

impracticable to detect attacks against users who follow the

recommendation and disable the transmission of the referrer

header. On the flip side, when treating such requests as cross

site request forgery attacks, then all requests of the concerned

users would be rejected. This problem is further aggravated by

the fact that an attacker can make use of several browser-

specific tricks to trigger a cross site request forgery request

with an empty referrer.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10497

E. Dynamic Token Generation

The basic goal of this technique is to prevent cross site request

forgeries by adding a fresh token to every web request whose

target page should be protected one way. This method,

according to Dave et al., (2016), efficiently prevents CSRF

attacks toward PHP web applications. It provides an automatic

robust solution again cross site request forgeries by employing

a CSRF token. It used to verify whether the token has been

previously issued from servers, utilizing the property of

cryptographically secure hash function. The demerit of this is

that it requires frequent dynamic generation of tokens.

F. Shared Secret

This method is employed between the client and the server to

identify the authentic origin of a request. For instance, a web

based banking application could be adapted such that the form

contains an additional, hidden token field (Acunetix, 2017).

This token must be generated by the application. This is meant

to ensure that the token is not easily predicted by an attacker

and associated with the current session. Ultimately, this

guarantees that requests for financial transactions are

processed only if they contain the correct token.

However, as Rob (2016) explains, the drawback of this

approach is that it requires a considerable amount of manual

work. Since majority of the current web applications have

evolved into large and complex systems, retrofitting them with

the mechanisms necessary for token management would

require detailed application-specific knowledge and

considerable modifications to the application source code.

Importantly, there is no guarantee that the modified code is

indeed free of cross site request forgery vulnerabilities, as

developers tend to make errors and omissions.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10498

G. Server-Side Proxy

This is a mitigation mechanism for cross site request forgery

that provides only partial protection by replacing GET requests

by POST requests. It can also rely on the information in the

Referer header of HTTP requests (Dingjie, 2017). This approach

is based on a server-side proxy that detects and prevents CSRF

attacks in a way that is transparent to users as well as to the

web application itself. The setback is that it only provides

partial protection for the underlying web applications.

H. Cryptographic Tokens

These tokens are employed to prove that the Action Formulator

knows a session specific secret. To achieve this, it utilizes secret

tokens to prove the Action Formulator knew an Action and user

specific secret. An optional HTTP referrer header is used to

verify Action Formulators (Matthew and Myers, 2016). This

requires changes to application state so that it is done only with

HTTP POST operations. This is facilitated by use of simplified

cross site prevention token.

Acunetix (2017) explain that the side effects of this is

that the attackers can modify their attacks to be form based

CSRF, submitting forms automatically or though tricking users

by making huge, mislabeled submit buttons. In this technique,

the header is optional and may not be present. In addition,

some browsers deactivate this header, making it unavailable

when interactions occur between HTTPS and HTTP served

pages. This increases the risk of header spoofing, and tracking

the valid sources of invocations may be difficult in some

applications.

I. Anti-CSRF Tokens

According to Abdalla (2015), the Synchronizer Token Pattern is

the recommended method and the most widely used prevention

technique. This method finds applications in many search

engines such as Google, social media applications such as

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10499

Facebook and Twitter, and popular open source web

applications such as WordPress and Joomla. The synchronizer

token pattern requires the generation of random challenge

tokens, referred to as anti-CSRF tokens, which are associated

with the user’s current session. These challenge tokens are then

inserted within the HTML forms and links associated with

sensitive server-side operations. Whenever a user submits a

form or makes a request to the links, the anti-CSRF token is

included in the request.

Thereafter, the server application verifies the existence

and correctness of this token before processing the request. If

the token is missing or incorrect, the request will be rejected.

The problem is that this methods requires secure socket layer o

be implemented in all applications. Additionally, it would not

detect login cross site request forgeries.

J. Limiting The Lifetime Of Authentication Cookies

Limiting the lifetime of cookies to a short period of time ensures

that if users were going on to other websites, then the cookies

should expire after a short period of time. This means that if an

intruder was trying to send any HTTP request to the users

which he was able to know, then the attacker would not fill the

password again (Luca et al., 2016). In this way, CSRF attacks

are often reduced to a brief period of the users’ time. On the flip

side, this may necessitate frequent logins on the side of

legitimate users.

K. Double Submitting Cookie

According to Telikicherla et al.,(2014), storing the cross site

request forgery token in session can prove problematic. , an

alternative defense is use of a double submit cookie. A double

submit cookie is defined as ending a random value in both a

cookie and as a request parameter, with the server verifying if

the cookie value and request value match.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10500

When a user authenticates to a site, the site should generate a

(cryptographically strong) pseudorandom value and set it as a

cookie on the user's machine separate from the session id. The

site does not have to save this value in any way, thus avoiding

server side state. The site then requires that every transaction

request include this random value as a hidden form value (or

other request parameter). According to Matthew and Myers

(2016), a cross origin attacker cannot read any data sent from

the server or modify cookie values, per the same-origin policy.

This means that while an attacker can force a victim to send

any value he wants with a malicious CSRF request, the

attacker will be unable to modify or read the value stored in the

cookie. Since the cookie value and the request parameter or

form value must be the same, the attacker will be unable to

successfully force the submission of a request with the random

CSRF value.

L. Encrypted Token Pattern

The Encrypted Token Pattern leverages an encryption, rather

than comparison, method of Token-validation. After successful

authentication, the server generates a unique Token comprised

of the user's ID, a timestamp value and a nonce, using a unique

key available only on the server. This Token is returned to the

client and embedded in a hidden field. Subsequent AJAX

requests include this Token in the request-header, in a similar

manner to the Double-Submit pattern. As Singh et al.,(2014)

point out, Non-AJAX form-based requests will implicitly

persist the Token in its hidden field. On receipt of this request,

the server reads and decrypts the Token value with the same

key used to create the Token. Inability to correctly decrypt

suggest an intrusion attempt. Once decrypted, the UserId and

timestamp contained within the token are validated to ensure

validity; the UserId is compared against the currently logged in

user, and the timestamp is compared against the current time.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10501

On successful Token-decryption, the server has access to parsed

values, ideally in the form of claims. These claims are processed

by comparing the UserId claim to any potentially stored UserId

(in a Cookie or Session variable, if the site already contains a

means of authentication). The Timestamp as Abdalla (2016)

discusses, is validated against the current time, preventing

replay attacks. Alternatively, in the case of a CSRF attack, the

server will be unable to decrypt the poisoned Token, and can

block and log the attack.

This pattern exists primarily to allow developers and

architects protect against CSRF without session-dependency. It

also addresses some of the shortfalls in other stateless

approaches, such as the need to store data in a Cookie,

circumnavigating the Cookie sub-domain and HTTP ONLY

issues (Luca et al., 2016). However, this requires dynamic

generation and requires a small amount of system resources to

check tokens and big database tables to manage tokens and

sessions.

M. Custom Request Headers

Adding CSRF tokens, a double submit cookie and value,

encrypted token or other defense that involves changing the

user interface can frequently be complex or otherwise

problematic. An alternate defense which is particularly well

suited for AJAX endpoints is the use of a custom request header

(Batarfi et al., 2014). This defense relies on the same-origin

policy restriction that only JavaScript can be used to add a

custom header, and only within its origin. By default, browsers

do not allow JavaScript to make cross origin requests.

A particularly attractive custom header and value to use

is: X-Requested-With: MLHttpRequest because most JavaScript

libraries already add this header to requests they generate by

default. Some of them do not though. For example, AngularJS

used to, but does not anymore. According to Nenad et al.,

(2015), if this is the case for a given system, one can simply

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10502

verify the presence of this header and value on all the server

side AJAX endpoints in order to protect against CSRF attacks.

This approach has the double advantage of typically requiring

no user interface changes and not introducing any server side

state, which is particularly attractive to REST services.

However, bypasses of this defense using Flash were

documented as early as 2008 and again as recently as 2015 to

exploit a CSRF flaw in Vimeo (Kavitha et al., 2016). On the

other hand, it is believed that the Flash attack cannot spoof the

Origin or Referer headers. Hence, by checking both of them, it

is anticipated that this combination of checks should prevent

Flash bypass CSRF attacks. However, many browsers disable

this Header.

N. Orthogonal Proxy-Based Solution

An orthogonal proxy-based solution on the client side builds

upon the token approach, and additionally proposes the use of

an outside entity for detecting IP-based authentication

(Kadambari and Manisha, 2016). For cases in which JavaScript

code initiates HTTP requests, this code is altered automatically

to contain the token. According to Jaya and Suneeta (2016),

without evaluation, the reliability of this technique, which

requires a certain extent of program understanding, is difficult

to assess. Also, it is believed that a manual treatment of these

rare cases on the server side provides a more stable and

efficient solution. Besides, due to the usual difficulties with

client-side proxies, this implementation does not support secure

socket layer connections yet.

III. DISCUSSIONS

The detection of web-based attacks has received considerable

attention because of the increasingly critical role that web-

based services are playing on the Internet. This includes web

application firewalls to protect applications from malicious

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10503

requests as well as intrusion detection systems that attempt to

identify attacks against web servers and their applications.

Also, code analysis tools were proposed that check applications

for the existence of bugs that can lead to security

vulnerabilities. In particular, cross site scripting attacks have

received much interest, and both server-side and client-side

solutions were proposed. For example, the use of a variety of

software-testing techniques, including dynamic analysis, black-

box testing, fault injection and behavior monitoring, are

suggested to identify cross site scripting vulnerabilities.

Alternatively, dynamic techniques on the server side can be

used to track non-validated user input while it is processed by

the application. This can help to detect and mitigate cross site

scripting flaws. Client-side solution to protect users from cross

site scripting attempts cannot be applied to the problem of cross

site request forgery. This is because cross sire request forgery

attacks are not due to input validation problems.

The cross site request forgery attacks appear to be a

little known problem in the academic community and, as a

result, have only received little attention. The mitigation

mechanisms for cross site that have been proposed so far either

provide only partial protection, such as replacing GET requests

by POST requests, or relying on the information in the Referer

header of HTTP requests or require significant modifications to

each individual web application that should be protected. This

is normally the case when embedding shared secrets into the

application’s output.

These attacks are still relatively unknown to web

developers and attackers. Even so, it is anticipated that the

attention paid to this class of attacks will reach that of more

traditional cross site scripting attacks in the near future as the

attack becomes better known and understood. Unfortunately,

current mitigation techniques have shortcomings that limit

their general applicability.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10504

IV. CONCLUSIONS

In a cross site request forgery attack, the trust of a web

application in its authenticated users is exploited, allowing an

attacker to make arbitrary hypertext transfer protocol requests

in the victim’s name. Unfortunately, current cross site request

forgery mitigation techniques have shortcomings that limit

their general applicability. Cross Site Request Forgery is one of

the top vulnerabilities in the internet. It remains challenging

for the researchers to provide a better solution for mitigating

this attack. There are many organizations affected by this cross

site request forgery attack. Defense mechanisms and existing

solutions for cross site request forgery are working in some

extend only. The existing mitigation strategies can be extended

to provide suitable solutions for the cross site request forgery

attack. This may involve applying parsing techniques to

identify the attacking spots before the intruders attack. Some

pattern for img, script, form, iframe tags can be designed to

identify the attack.

REFERENCES

1. Ramarao R., (2009), “Preventing Image Based CSRF

Attacks”.

2. Sentamilselvan K., Lakshamana K., & Sathiyamurthy

K. (2013), “Survey on Cross Site Request Forgery (An

Overview of CSRF”, Kongu Engineering College

3. Rob S. (2016), “Cross-site request forgery: Lessons from a

CSRF attack example”.

4. Neil D. (2015), “Cross-Site Request Forgery Guide: Learn

All About CSRF Attacks and CSRF Protection”.

5. Dave W., Paul P., & Eric S. (2016), “Cross-Site Request

Forgery (CSRF) Prevention Cheat Sheet”.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10505

6. Luca G., Sara G., & Davide P. (2016), “Cross-Site

Scripting and Cross-Site Request Forgery attacks”,

Network Security.

7. Lance B. (2016), “Cross Site Scripting and Cross Site

Request Forgery”.

8. Acunetix (2017), “CSRF Attacks, XSRF or Sea-Surf –

What They Are and How to Defend Against Them”.

9. Dingjie Y. (2017), “Do Your Anti-CSRF Tokens Really

Protect Your Web Apps from CSRF Attacks?”.

10. Matthew P. & Myers R. (2016), “Mitigating Cross-Site

Request Forgery (CSRF) Attacks”.

11. Abdalla A. (2015), “ Building a Robust Client-Side

Protection Against Cross Site Request Forgery”,

International Journal of Advanced Computer Science

and Applications.

12. Telikicherla, Krishna C., Venkatesh C., and

Bruhadeshwar B. (2014), "CORP: A Browser Policy to

Mitigate Web Infiltration Attacks", Information Systems

Security, Springer International Publishing, pp. 277-

297.

13. Singh, Nanhay, Achin J., Ram S., and Rahul R. (2014),

"Detection of Web-Based Attacks by Analyzing Web

Server Log Files", In Intelligent Computing, Networking,

and Informatics, Springer India, pp. 101-109

14. Batarfi, Omar A., Aisha M. Alshiky, Alaa A. Almarzuki,

and Nora A.(2014), "CSRFDtool: Automated Detection

and Prevention of a Reflected Cross-Site Request

Forgery."

15. Nenad J., Engin K., and Christopher K. (2015),

“Preventing Cross Site Request Forgery Attacks”.

16. Kavitha D., Akshaya M., Karthick M., Baghya K.,

Gomathi E. (2016), “Prevention of CSRF and XSS

Security Attacks in Web Based Applications”,

International Journal of Innovative Research in Science,

Engineering and Technology.

Edna Ogari, Waweru Mwangi, Agness Mindila- Security Evaluation of CSRF

Protection Mechanisms

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 12 / March 2017

10506

17. Kadambari C., & Manisha T. (2016), “ Prevention of

CSRF Attack using STG pattern and JSED”,

International Journal of Applied Engineering Research.

18. Kombade, Rupali D., and Meshram B. (2012), "CSRF

Vulnerabilities and Defensive Techniques",

International Journal of Computer Network and

Information Security (IJCNIS) 4.1 (2012): 31.

19. Sentamilselvan K, Lakshamana S., Pandian and

Sathiyamurthy K. (2013), “Survey on Cross Site Request

Forgery”.

20. Jaya G. and Suneeta G. (2016), “Server Side Protection

against Cross Site Request Forgery using CSRF

Gateway”, Journal of Information Technology &

Software Engineering.

