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Abstract:  

 One of the most commonly applied hypothesis test procedures 

in applied research is the comparison of two population means. This 

article contains the bootstrap methods to test the equality of means of 

two random samples. Such a problem is called a two-sample problem. 

In considering a bootstrap hypothesis test for comparing the two 

means, there is no compelling reason to assume equal variances and 

hence we don’t make that assumption. These methods can be used even 

when both random samples have not a normal distribution. Another 

way to test the difference of means between the two independent 

random variables is through the permutation test. Permutation test is 

useful when we do not know how to compute the distribution of a test 

statistic. We have given the algorithms for computation of the achieved 

significance level of the test, which are constructed from B. Efron and 

R.J. Tibshirani 1993. A way to judge the acceptance or reject the null 

hypothesis we use the achieved significance level (ASL), otherwise 

called the p-values. We used R program to estimate type I errors by 

simulating data of two known random samples to compare results 

with results that are given from bootstrap methods. 

 

Key words: bootstrap tests, p-values, two-sample problem, null 

hypothesis, degrees of freedom. 
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INTRODUCTION 

 

In the first part of the article is given the known cases of 

statistics, when random variables are independent and have a 

normal distribution. In the second part of the article is given 

the achieved significance level and bootstrap methods for 

hypothesis test. Finally we check for the performance of two 

bootstrap methods, one in case we have assumptions that the 

two independent random variables have the same dispersion 

and the second case when we do not take into consideration the 

assumption that random variables have equal dispersions. 

We observe two independent random variables X  and Y  

drawn from possibly different probability distributions F  and 

G . Suppose that the observed values are 1 2( , ,..., )nx x x x
, 

1 2( , ,..., )my y y y
. We want to test the hypothesis 0H

 that there 

is no difference between their means. 

 

1. HYPOTHESIS TESTING FOR THE DIFFERENCE OF 

MEANS 

 

1.1 Hypothesis testing for the difference of means when 

they have normal distribution. 

Suppose we have two independent random variables with 

normal distribution and we want to test: 

0H : X Y   versus :A X YH   .     (1) 

with significance level  . 

Situation 1: If 2~ ( , )X XX N   , 2~ ( , )Y YY N    , the variances are 

known. In this case we can use test statistic: 

2 2
X Y

X Y
Z

n m

 






       (2) 
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when null hypothesis 0H is true, Z  has standard normal 

distribution. Allowed area is ] , [/2 /2z z  , where

/2 2( ) (1 ) /z    ,   the Laplace’s function,   the level of 

significance. 

Situation 2: If 2~ ( , )X XX N   , 2~ ( , )Y YY N   , the variances are 

unknown but equal we can use test statistic: 

2 2

( 2)

( 1) ( 1)X Y

X Y nm n m
T

n mn s m s

  


  
    (3) 

where 2 2

1

( ) / ( 1)
n

X i

i

s x x n


   , 2 2

1

( ) / ( 1)
m

Y i

i

s y y m


   . When 0H
 

is true ~ ( 2)T S n m  . Allowed area is /2 /2] , [t t  , where /2t  is 

found in table of student distribution with / 2  with 2n m 

degree of freedom. 

Situation 3: If X  and Y are paired, then we put random 

variable Z X Y  , where i i iZ X Y  , 1,...,i n . Now we have 

2 2( , )X Y X YZ N       which can treated as in the case “one 

sample”, student criterion. 

Situation 4: Variances are unknown and unequal. We can use 

Welch criterion: 

2 2
X Y

X Y
T

s s

n m






       (4) 

When 0H
 

is true, 0~ ( )T S n , where 

 

       

2
2 2

0 2 2
2 2

/ /

/ / 1 / / 1

X Y

X Y

s n s m
n

s n n s m m




  
. The approximation 0n  

dates back to a series of papers by Welch 1938, 1947. 
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The achieved significance level (ASL) 

In all cases treated with the above assumptions we had about 

random variables to come from a normal distribution. In this 

part we describe how bootstrap methods can be used to produce 

significance tests. The basic idea to test the hypothesis with the 

bootstrap method is to test the hypothesis, without normality 

assumption. 

The simplest situation involves a simple null hypothesis 

0
H  which completely specifies the probability distribution of the 

data. Thus, we are dealing with a single sample 

1 2( , ,..., )nX X X X  from a population with CDF (cumulative 

distribution function) F , then 0H  specifies that 0F F , where 

0F  contains no unknown parameters, for example “exponential 

with mean 1”. The more usual situation in practice is that 0H  is 

a composite null hypothesis, which means that some aspects of 

F  are not determined and remain unknown when 0H  is true. 

An example: “normal with mean 5”, the variance of the normal 

distribution being unspecified. 

Suppose obst is the observed value of a statistic T  with 

cumulative distribution TF  under the null hypothesis. 

The achieved significance level (ASL) or p-value of the 

test is defined to be the probability of observing at least that 

large a value when the null hypothesis is true (Bradley Efron 

and R.J Tibshirani 1993, 203). 

0P( )obsASL T t          (5) 

The quantity obst  is fixed at its observed value. The random 

variable T  has the null hypothesis distribution; the 

distribution of T  if 0H  is true. Let we wish to perform a test at 

level  that reject the null hypothesis when obst is in the upper 

tail. Then the ASL calculate 

1 ( )T obsASL F t         (6) 
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Where ASL is less than 0.1, we have borderline evidence 

against 0H , if ASL<0.05 reasonably strong evidence against 0H , 

if ASL<0.025 strong evidence against 0H , if ASL<0.01 very 

strong evidence against 0H . 

If we are in situation 1 the variances are known 

2 2 2 2
P( ) 1 ( )

/ / / /X Y X Y

x y x y
ASL Z

n m n m   

 
   

 
  (7) 

when the (.)  is the Laplace function, probability density 

function of standard normal distribution. 

ASL calculation, when we know variances using R program: 

ASL<-1-pnorm((mean(x)-mean(y))/sqrt(var(x)/n+var(y)/m) 

The variances are known, and equal: 2( , )XF N   , 

2( , )YG N    

then 
2

0

1 1
: ~ (0, ( ))H T N

n m
   and ASL calculate in this way: 

P( ) 1 ( )
1/ 1/ 1/ 1/

x y x y
ASL Z

n m n m 

 
   

 
  (8) 

If the variances are unknown, bat equal as in situation 2, the 

test statistic T has Student’s t-distribution with n+m-2  df 

(degrees of freedom), then ASL calculate in this way: 

P( )
1/ 1/

df

x y
ASL t

n m


 


     (9) 

where standard estimate for  is 

2 2

1 1

[ ( ) ( ) ] / [ 2]
n m

i
i i

x x y y n m
i


 

       .
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The bootstrap achieved significance level (ASLboot) 

A bootstrap hypothesis test is based on a test statisticT . To 

emphasize that a test statistic need not be an estimate of a 

parameter, we denote it here by ( )T Z . In our example we have

( )T Z X Y  . The achieved significance level is: 

0P( ( ) )obsASL T Z t H        (10) 

The quantity obst is fixed at its observed value and the random 

variable Z  has a distribution specified by the null hypothesis

0H . Call this distribution TF . Bootstrap hypothesis testing uses 

a “plug-in” style estimate for 0F . Denote the combined sample 

by Z and let its empirical distribution be 0F̂ , putting probability 

1/ ( )n m  on each member of Z . Under 0H , 0F̂  provides a 

nonparametric estimate of the common population that gave 

rise to both x and y. 

Algorithm 1. (B. Efron and R.j Tibshirani, 1993, p. 221). 

1. Draw R samples of size n m  with replacement from Z . 

Call the first n  observations 
*X and the remaining m  

observation 
*.Y  

2. Evaluate * * *( )rT Z X Y  , 1,..., .r R  

3. Approximate bootASL  by 

*{ ( ) }ˆ
r

obs
boot

number T Z t
ASL

R


      (11) 

When we wish to perform a two-tailed test, and suppose that, 

the distribution of T  is symmetrically distribution around zero, 

then, bootstrap ASL calculated in this way: 

*{ ( ) }
ˆ

r
obs

boot

number T Z t
ASL

R


                 (12) 

If we are not willing to make this assumption, we can use the 

equal-tail bootstrap ASL (MacKinnon 2007, 4) 
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* *{ ( ) } { ( ) }ˆ 2min ,
r r

obs obs
boot

number T Z t number T Z t
ASL

R R

   
  

  
  (13) 

A similar definition for p-value has also given A.C. Davison and 

D.V. Hinkley 1997, 

*
0
ˆ( )bootp Prob T t F  . We can use this in nonparametric 

bootstrap test, bootp  to approximate by 
*1 { }

1

rnumber t t
p

R

 



 

using *1 *2 *, ,...., Rt t t  from R bootstrap samples. 

More accurate testing can be obtained through the use of a 

studentized statistic. If we are not willing to assume that the 

variances in the two populations are equal, we could base the 

test statistic (4). With normal populations, the quantity (4) no 

longer has a Student’s t  distribution. 

The equal variance assumption is attractive for the t -test. 

In considering a bootstrap hypothesis test for comparing the 

two means, there is no compelling reason to assume equal 

variances and hence we don’t make that assumption. The 

algorithm (B. Efron and R.J. Tibshirani, 1993, p. 224) for 

computation of the bootstrap test statistic for testing equality of 

means: 

1. Let F̂  put equal probability on the points i iX X X Z  

, 1,...,i n , and Ĝ  put equal probability on the points 

i iY Y Y Z   , 1,...,i m , where X  and Y  are the group 

means and Z  is the mean of the combined sample. 

2. Form R bootstrap data sets * *( , )X Y  where *X  is 

sampled with replacement from 1,..., nX X  and *Y  is 

sampled with replacement from
1,..., mY Y . 

3. Evaluate (.)T  defined by (3) on each data set, 
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* *
*

2* 2*
( )

/ /

r

X Y

X Y
T Z

s n s m





, 1,...,r R     (14) 

4. Approximate bootASL  by
*ˆ { ( ) } /r

boot obsASL number T Z t R  , 

where obst  is the observed value of the statistic. 

2. SIMULATIONS IN R 

 

2.1 Bootstrap methods for hypothesis test in R program 

Suppose we have two independent random samples, a random 

sample of size 50 is taken from ~ (10,5)X N  and a random 

sample of size 40 is taken from ~ (10,8)Y N . We know that 

difference of means is 0 and the variances are unequal in this 

case. 

The null and alternative hypothesis: 

0 : 0X YH     vs. : 0a X YH     

We use the methods bootstrap in R for test the hypothesis. The 

commands for this simulation will be mentioned in the 

appendix A1. 

 

Figure 1 Histogram of bootstrap replications of statistics T(x). 

Red line is observation t-value. 

We calculated ASLboot = 0.6317. This is bigger than 0.05, then 

we come to the conclusion that null hypothesis is true with 

significant level 0.05  , as we expected. 
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Permutation test gives p-value = 0.6407. This suggests that the 

null hypothesis is not rejected. The commands for permutation 

test will be mentioned in the appendix A1. 

2.2 Simulations. Estimate of type I error 

Type I error is the error of rejecting a null hypothesis when it is 

actually true. 

State the random variables and the parameters in 

words. X- the first random variable, Y- the second variable, X - 

mean of first random variable, Y - mean of first random 

variable. 

Null hypothesis and alternative hypothesis: 

0 : 0X YH     vs. : 0a X YH     

0H : true difference in means is equal to 0 versus aH : true 

difference in means is not equal to 0. 

We used R program for estimate of type I error and this 

results are shown in tables below. The commands for those 

simulations will be mentioned in the appendix A2. 

In Table 1 and 2 the random variable are taken from 

normal distribution. We take 1000 Monte Carlo simulation, for 

any Monte Carlo simulation we find bootstrap distribution for 

difference of means and calculate bootstrap ASL for any of 

them. Several numbers for bootstrap replicate are taken, R=99, 

R=999 and R=9999. For more Monte Carlo simulation see 

Pierre Lafaye de Micheaux and Viet Anh Tran 2016. 

 

Table1: Estimate of error type I. 
2~ ( , )X XX N   , 

2~ ( , )Y YY N   . The 

variances are unknown but equal. MC  1000 . 

Simulation with 0X Y   ,
2 2 8X Y   , 0.05  , n 10,  m 15   

Methods R=99 R=999 R=9999 

Two sample t-test 0.057 0.05 0.048 

Bootstrap method 1 0.061 0.052 0.051 

Simulation with 10X Y   ,
2 2 8X Y   , 0.05  , n 10,  m 15   

Two sample t-test 0.049 0.056 0.042 
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Bootstrap method 1 0.053 0.060 0.044 

Simulation with 10X Y   ,
2 2 8X Y   , 0.05  , n 100,  m 80   

Two sample t-test 0.050 0.055 0.055 

Bootstrap method 1 0.049 0.049 0.055 

 

Table 2: Estimate of error type I. 
2~ ( , )X XX N   , 

2~ ( , )Y YY N   . The 

variances are unknown but unequal. MC  1000  

Simulation with 10X Y   , 
2 4X  , 

2 8Y  , 0.05  , n 10,  m 15   

Methods  R=99 R=999 R=9999 

Welch two sample t-test 0.058 0.051 0.05 

Bootstrap method 2 0.055 0.046 0.05 

Simulation with 10X Y   , 
2 4X  , 

2 8Y  , 0.05  , n 100,  m 80   

Welch two sample t-test 0.049 0.041 0.056 

Bootstrap method 2 0.052 0.041 0.055 

In Table 3 the random variable are taken from normal 

distribution. We take 10000 Monte Carlo simulations, for any 

Monte Carlo simulation we find bootstrap distribution for 

difference of means and calculate bootstrap ASL for any of 

them. Several numbers for bootstrap replicate are taken, R=99, 

R=999 and R=9999. 

Table 3: Estimate of error type I. 
2~ ( , )X XX N   , 

2~ ( , )Y YY N   . The 

variances are unknown but unequal. MC 10000 . 

Simulation with 10X Y   , 
2 4X  , 

2 8Y  , 0.05  , n 10,  m 15   

Methods  R=99 R=999 R=9999 

Welch two sample t-test 0.0477 0.0479 0.0514 

Bootstrap method 2 0.0472 0.0498 0.0546 

In Table 4 the random variable are taken from exponential 

distribution, while in table 5 the random variable are taken 

from gamma distribution. We take 1000 Monte Carlo 

simulation, for any Monte Carlo simulation we find bootstrap 

distribution for difference of means and calculate bootstrap 

ASL for any of them. Several numbers for bootstrap replicate 

are taken, R=99, R=999 and R=9999. 
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Table 4: Estimate of type error type I. ~ ( )X E  , ~ ( )Y E  , 

MC 1000 , 0.05  , 10n  , 15m  . 

Methods R=99 R=999 R=9999 

Two sample t-test 0.056 0.042 0.045 

Bootstrap method 1 0.054 0.049 0.047 

Two sample t-test 0.044 0.047 0.043 

Bootstrap method 2 0.044 0.052 0.051 

Table 5: Estimate of type error type I. 

~ ( 3, 2)X Gamma shape scale  , ~ ( 3, 2)Y Gamma shape rate  , 

MC 1000 , 0.05  , 10n  , 15m  . 

Methods R=99 R=999 R=9999 

Two sample t-test 0.035 0.062 0.041 

Bootstrap method 1 0.039 0.065 0042 

Welch two sample t-test 0.056 0.045 0.053 

Bootstrap method 2 0.055 0.047 0.055 

 

CONCLUSION 

 

The main practical difficulty with hypothesis test comes in 

calculating the ASL (5). In order to actually calculate the ASL, 

we had to either approximate the null hypothesis variance as in 

(9), Student’s method, but only applied to the normal situation. 

In considering a bootstrap hypothesis test for comparing the 

two means, there is no compelling reason to assume equal 

variances and hence we don’t make that assumption. Bootstrap 

methods performance is given in the above tables. 
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APPENDIX 

A1. Calculate ASL with bootstrap method 

sim.x <-rnorm(50,10,5); n.x=length(sim.x); 

mean.x=mean(sim.x);var.x=var(sim.x) 

sim.y <- rnorm(40,10,8); n.y <- length (sim.y); mean.y <- mean(sim.y) 

var.y <- var(sim.y); 

t.obs <- (mean.x-mean.y)/sqrt(var.x/n.x + var.y/n.y) 

total <- c(sim.x,sim.y); mean.tot <- mean(total) 

x.tilde = sim.x - mean.x + mean.tot; y.tilde = sim.y - mean.y + mean.tot; 

R=9999 

mean.x.star <- var.x.star <- numeric(); mean.y.star <- var.y.star <- numeric() 

t.star <- numeric() 

# Start the bootstrap procedure 

for (r in 1:R){ 

x.tilde.star <- sample(x.tilde, replace=TRUE) 

mean.x.star[r] <- mean(x.tilde.star) 

var.x.star[r] = var(x.tilde.star) 

y.tilde.star <- sample(y.tilde, replace=TRUE) 

mean.y.star[r] <- mean(y.tilde.star) 

var.y.star[r] <- var(y.tilde.star) 

t.star[r] <- (mean.x.star[r]-mean.y.star[r])/sqrt(var.x.star[r]/n.x + 

var.y.star[r]/n.y) 

}  # finish the bootstrap procedure 

# Calculate the approximate ASL 

ASL.star <- sum( abs(t.star) > abs(t.obs))/(R+1) 

hist(t.star,freq = FALSE,col = "5", main="Bootstrap estimations",  

xlab="Bootstrap values") 

box() 

abline(v=t.obs,col="red",lwd=3,lty=1); paste("ASL.star =",ASL.star) 

##Permutation test 

group = rep (c ("g1", "g2"), c (length (sim.x), length (sim.y))) 

lengths = data.frame( lengths = c(sim.x, sim.y), group) 

n.x <- length (sim.x) 

n.y <- length (sim.y) 

pool <- lengths$lengths 

obs.diff.p <- mean (sim.x) - mean (sim.y) 

 iterations <- 10000 

sampl.dist.p <- NULL 

for (i in 1 : iterations) { 

 resample <- sample (c(1:length (pool)), length(pool)) 

g1.perm = pool[resample][1 : n.x] 

g2.perm = pool[resample][(n.x+1) : length(pool)] 
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sampl.dist.p[i] = mean (g1.perm) - mean (g2.perm)  

} 

p.permute <- (sum (abs (sampl.dist.p) >= obs.diff.p) + 1)/ (iterations+1) 

 

A.2 Testing hypothesis. Two sample t-test, Welch two 

sample t-test, bootstrap methods 

H0: true difference in means is equal to 0. Type I error 

estimates. 

Case 1.1: First case variables are normal. Variances are 

unknown but equal. 

# Testing with two sample t-test and with bootstrap method1. 

rm(list=ls()) 

library(bootstrap) 

#We define the function as follows 

diff.means <- function(x,n1) { 

ifelse(length(x) <= n1,  

stop("attention !! n.1 must be less than length(x)",call.=FALSE,domain=NA), 

mean(x[1:n1]) - mean(x[(n1+1):length(x)]))} 

alpha<-0.05 # Ha: true difference in means is not equal to 0 (two-sided) 

x.var=8; x.mean=10; x.n=10; y.var=8; y.mean=10; y.n=15 

decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric() 

MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- numeric() 

R.ind=0  

for (R in R.vec) { 

R.ind = R.ind+1 

for(mc in 1:MC) {  

x<-rnorm(x.n,x.mean,sqrt(x.var)); y<-rnorm(y.n,y.mean,sqrt(y.var)); 

total=c(x,y) 

decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal = 

TRUE)$p.value < alpha,0,1) 

t.obs = mean(x)-mean(y) 

# Bootstrap method 1 

d.boot <-bootstrap(total,nboot=R,theta=diff.means,n1 = x.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} # finish Monte Carlo cycle 

error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-

sum(decision.mc)/MC 

# paste ("error1.Monte Karlo:",error1.mc) 

# paste ("error1.bootstrap:",error1.boot) 

} 
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Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr","Two sample t-test","Bootstrap 

method")) 

Results 

 

Case 1.2: Test with normality assumption. Variances are 

unknown and unequal. 

Testing with Welch two sample t-test and with bootstrap 

method 2. 

rm(list=ls()) 

library(bootstrap) 

#We define the function as follows 

diff.means.sd <- function(x,n1) { 

ifelse(length(x) <= n1,  

stop("attention !! n.sample must be less than 

length(x)",call.=FALSE,domain=NA), 

(mean(x[1:n1]) - mean(x[(n1+1):length(x)]) 

)/sqrt((var((x[1:n1]))/n1+var(x[(n1+1):length(x)])/(length(x)-n1))))  

} 

alpha<-0.05 # Ha: true difference in means is not equal to 0 (two-sided) 

x1.var=4; x1.mean=10; x1.n=10; y1.var=8; y1.mean=10; y1.n=15 

decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric() 

MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- numeric() 

R.ind=0  

for (R in R.vec) { ## 1 

R.ind = R.ind+1 

for(mc in 1:MC) { ## 2  

x1<-rnorm(x1.n,x1.mean,sqrt(x1.var)); y1<-rnorm(y1.n,y1.mean,sqrt(y1.var)) 

total=c(x1,y1); x<-x1-mean(x1)+mean(total); y<-y1-mean(y1)+mean(total) 

decision.mc[mc]=ifelse(t.test(x1,y1,alternative ="two.sided", var.equal = 

FALSE)$p.value < alpha,0,1) 

t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.n+var(y1)/y1.n) 

# Bootstrap method 2 

d.boot <-bootstrap(total,nboot=R,theta=diff.means.sd,n1 = x1.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} # finish Monte Carlo cycle 

error1.mc[R.ind] = 1-sum(decision.mc)/MC; error1.boot[R.ind] = 1-

sum(decision.boot)/MC  

# paste ("error1.Monte Carlo:",error1.mc) 

#  paste ("error1.bootstrap:",error1.boot) 
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} 

Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr","Welch two sample t-test","Bootstrap 

method")) 

Results 

 

Case 2.1 Difference means of two exponential 

distribution variables. 

Two sample t-test and bootstrap method 1. Ha: true 

difference in means is not equal to 0. 

rm(list=ls()) 

diff.means <- function(x,n1) { 

ifelse(length(x) <= n1, 

stop("attention !! n.sample must be less than length(x)", call.=FALSE, 

domain=NA), 

mean(x[1:n1]) - mean(x[(n1+1):length(x)]))} 

rate.x.exp=0.5; x.exp.n=10;rate.y.exp=0.5; y.exp.n=15 

decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric() 

alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- 

numeric() 

R.ind=0 

for (R in R.vec) { ## 1 

R.ind = R.ind+1 

for(mc in 1:MC) { ### start Monte Carlo cycle 

x<-rexp(x.exp.n,rate = rate.x.exp); y<-rexp(y.exp.n,rate.y.exp); total=c(x,y) 

decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal = 

TRUE)$p.value < alpha,0,1) 

t.obs = mean(x)-mean(y) 

# Bootstrap method 1 

d.boot <-bootstrap(total,nboot=R,theta=diff.means,n1 = x.exp.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} #finish  Monte Carlo cycle 

error1.mc[R.ind] = 1-sum(decision.mc)/MC; error1.boot[R.ind] = 1-

sum(decision.boot)/MC 

#  paste ("error1.Monte Carlo:",error1.mc); # paste 

("error1.bootstrap:",error1.boot) 

} 

Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap 

method")) 
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Results 

 

Case 2.2 Difference means of two exponential 

distribution variables. 

Two sample test and bootstrap method 2. 

rm(list=ls()) 

diff.means.sd <- function(x,n1) { 

ifelse(length(x) <= n1,  

stop("attention !! n.sample must be less than 

length(x)",call.=FALSE,domain=NA), 

(mean(x[1:n1]) - mean(x[(n1+1):length(x)]) 

)/sqrt((var((x[1:n1]))/n1+var(x[(n1+1):length(x)])/(length(x)-n1))))  

} 

rate.x1.exp=0.5; x1.exp.n=10; rate.y1.exp=0.5; y1.exp.n=15; decision.mc <- 

numeric() 

decision.boot <- numeric(); p.value.boot <- numeric() 

alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- 

numeric() 

R.ind=0 

for (R in R.vec) { # 1 

R.ind = R.ind+1 

for(mc in 1:MC) { # start Monte Carlo cycle 

x1<-rexp(x1.exp.n,rate = rate.x1.exp); y1<-rexp(y1.exp.n,rate=rate.y1.exp); 

total=c(x1,y1) 

x<-x1-mean(x1)+mean(total); y<-y1-mean(y1)+mean(total) 

decision.mc[mc]=ifelse(t.test(x1,y1, alternative ="two.sided", var.equal = 

FALSE)$p.value < alpha,0,1) 

t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.exp.n+var(y1)/y1.exp.n) 

# Bootstrap method 2 

d.boot <-bootstrap(total,nboot=R,theta=diff.means.sd,n1 = x1.exp.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} # finish Monte Carlo cycle 

error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-

sum(decision.mc)/MC 

# paste ("error1.Monte Carlo:",error1.mc); # paste 

("error1.bootstrap:",error1.boot) 

} 

Results <- matrix(c(R.vec,error1.mc, error1.boot), nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap 

method")) 

Results 



Ilir Palla, Lorenc Ekonomi- The Bootstrap Methods to Test the Equality of Two 

Means 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. V, Issue 8 / November 2017 

4360 

Case 3.1 Difference means of two gamma distribution 

variables. 

#Ha: true difference in means  is not equal to 0. 

rm(list=ls()) 

diff.means <- function(x,n1) { 

ifelse(length(x) <= n1, 

stop("attention !! n.sample must be less than 

length(x)",call.=FALSE,domain=NA), 

mean(x[1:n1]) - mean(x[(n1+1):length(x)]))} 

x.shape=3; x.scale=2; x.gamma.n=10; y.shape=3; y.scale=2; y.gamma.n=15 

decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric() 

alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- 

numeric() 

R.ind=0 

for (R in R.vec) { # 1 

R.ind = R.ind+1 

for(mc in 1:MC) { # start Monte Carlo cycle 

x<-rgamma(x.gamma.n,shape = x.shape, scale=x.scale) 

y<-rgamma(y.gamma.n,shape = y.shape, scale=y.scale) 

total=c(x,y) 

decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal = 

TRUE)$p.value < alpha,0,1) 

t.obs = mean(x)-mean(y) 

#Bootstrap method 1 

d.boot <-bootstrap(total,nboot=R,theta=diff.means,n1 = x.gamma.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} ### finish Monte Carlo cycle 

error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-

sum(decision.mc)/MC 

# paste ("error1.Monte Carlo:",error1.mc); # paste 

("error1.bootstrap:",error1.boot) 

} 

Results <- matrix(c(R.vec,error1.mc, error1.boot), nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap 

method")) 

Results 
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Case 3.2: The second case, difference means of two 

gamma distribution variables. 

Welch two sample test and bootstrap method 2. 

rm(list=ls()) 

diff.means.sd <- function(x,n1) { 

ifelse(length(x) <= n1,  

stop("attention !! n.sample must be less than 

length(x)",call.=FALSE,domain=NA), 

(mean(x[1:n1]) - mean(x[(n1+1):length(x)]) 

)/sqrt((var((x[1:n1]))/n1+var(x[(n1+1):length(x)])/(length(x)-n1))))  

} 

x1.shape=3; x1.scale=2; x1.gamma.n=10; y1.shape=3; y1.scale=2; 

y1.gamma.n=15 

decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric() 

alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- 

numeric() 

R.ind=0 

for (R in R.vec) { ## 1 

R.ind = R.ind+1 

for(mc in 1:MC) { ### start Monte Carlo cycle 

x1<-rgamma(x1.gamma.n,shape = x1.shape, scale = x1.scale) 

y1<-rgamma(y1.gamma.n,shape = y1.shape, scale = y1.scale) 

total=c(x1,y1) 

x<-x1-mean(x1)+mean(total); y<-y1-mean(y1)+mean(total) 

decision.mc[mc]=ifelse(t.test(x1,y1,alternative ="two.sided", var.equal = 

FALSE)$p.value < alpha,0,1) 

t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.gamma.n+var(y1)/y1.gamma.n) 

## Bootstrap method 2 

d.boot <-bootstrap(total,nboot=R,theta=diff.means.sd,n1 = 

x1.gamma.n)$thetastar 

p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1) 

decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1) 

} ###  finish Monte Carlo cycle 

error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-

sum(decision.mc)/MC 

## paste ("error1.Monte Carlo:",error1.mc); ## paste 

("error1.bootstrap:",error1.boot) 

} 

Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE) 

dimnames(Results) <- list(c("boot.nr","Welch two sample t-test","Bootstrap 

method")) 

Results 
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