The Bootstrap Methods to Test the Equality of Two Means

ILIR PALLA
LORENC EKONOMI
Department of Mathematics, Informatics and Physics
Faculty of Natural and Human Sciences
University of Korça, Albania

Abstract:
One of the most commonly applied hypothesis test procedures in applied research is the comparison of two population means. This article contains the bootstrap methods to test the equality of means of two random samples. Such a problem is called a two-sample problem. In considering a bootstrap hypothesis test for comparing the two means, there is no compelling reason to assume equal variances and hence we don’t make that assumption. These methods can be used even when both random samples have not a normal distribution. Another way to test the difference of means between the two independent random variables is through the permutation test. Permutation test is useful when we do not know how to compute the distribution of a test statistic. We have given the algorithms for computation of the achieved significance level of the test, which are constructed from B. Efron and R.J. Tibshirani 1993. A way to judge the acceptance or reject the null hypothesis we use the achieved significance level (ASL), otherwise called the p-values. We used R program to estimate type I errors by simulating data of two known random samples to compare results with results that are given from bootstrap methods.

Key words: bootstrap tests, p-values, two-sample problem, null hypothesis, degrees of freedom.
INTRODUCTION

In the first part of the article is given the known cases of statistics, when random variables are independent and have a normal distribution. In the second part of the article is given the achieved significance level and bootstrap methods for hypothesis test. Finally we check for the performance of two bootstrap methods, one in case we have assumptions that the two independent random variables have the same dispersion and the second case when we do not take into consideration the assumption that random variables have equal dispersions.

We observe two independent random variables X and Y drawn from possibly different probability distributions F and G. Suppose that the observed values are $x=(x_1, x_2, ..., x_n)$, $y=(y_1, y_2, ..., y_m)$. We want to test the hypothesis H_0 that there is no difference between their means.

1. HYPOTHESIS TESTING FOR THE DIFFERENCE OF MEANS

1.1 Hypothesis testing for the difference of means when they have normal distribution.

Suppose we have two independent random variables with normal distribution and we want to test:

$H_0: \mu_X = \mu_Y$ versus $H_A: \mu_X \neq \mu_Y$. \hspace{1cm} (1)

with significance level α.

Situation 1: If $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, the variances are known. In this case we can use test statistic:

$$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \hspace{1cm} (2)$$
when null hypothesis H_0 is true, Z has standard normal distribution. Allowed area is $[-z_{\alpha/2}, z_{\alpha/2}]$, where $\Phi(z_{\alpha/2}) = (1 - \alpha)/2$, Φ the Laplace’s function, α the level of significance.

Situation 2: If $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, the variances are unknown but equal we can use test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m}}} \sqrt{\frac{nm(n+m-2)}{n+m}}$$

(3)

where $s_X^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 / (n-1)$, $s_Y^2 = \sum_{i=1}^{m} (y_i - \bar{y})^2 / (m-1)$. When H_0 is true $T \sim S(n+m-2)$. Allowed area is $[-t_{\alpha/2}, t_{\alpha/2}]$, where $t_{\alpha/2}$ is found in table of student distribution with $n+m-2$ degree of freedom.

Situation 3: If X and Y are paired, then we put random variable $Z = X - Y$, where $Z_i = X_i - Y_i$, $i = 1, ..., n$. Now we have $Z \sim N(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$ which can treated as in the case “one sample”, student criterion.

Situation 4: Variances are unknown and unequal. We can use Welch criterion:

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$$

(4)

When H_0 is true, $T \sim S(n_0)$, where

$$n_0 = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\left(\frac{s_X^2}{n}
ight)^2 / (n-1) + \left(\frac{s_Y^2}{m}\right)^2 / (m-1)}.$$

The approximation n_0 dates back to a series of papers by Welch 1938, 1947.
The achieved significance level (ASL)

In all cases treated with the above assumptions we had about random variables to come from a normal distribution. In this part we describe how bootstrap methods can be used to produce significance tests. The basic idea to test the hypothesis with the bootstrap method is to test the hypothesis, without normality assumption.

The simplest situation involves a simple null hypothesis $H_0,$ which completely specifies the probability distribution of the data. Thus, we are dealing with a single sample $X = (X_1, X_2, ..., X_n)$ from a population with CDF (cumulative distribution function) $F,$ then H_0 specifies that $F = F_0,$ where F_0 contains no unknown parameters, for example “exponential with mean 1”. The more usual situation in practice is that H_0 is a composite null hypothesis, which means that some aspects of F are not determined and remain unknown when H_0 is true. An example: “normal with mean 5”, the variance of the normal distribution being unspecified.

Suppose t_{obs} is the observed value of a statistic T with cumulative distribution F_T under the null hypothesis.

The achieved significance level (ASL) or p-value of the test is defined to be the probability of observing at least that large a value when the null hypothesis is true (Bradley Efron and R.J Tibshirani 1993, 203).

$$ASL = P(T \geq t_{obs} \mid H_0)$$ (5)

The quantity t_{obs} is fixed at its observed value. The random variable T has the null hypothesis distribution; the distribution of T if H_0 is true. Let we wish to perform a test at level α that reject the null hypothesis when t_{obs} is in the upper tail. Then the ASL calculate

$$ASL = 1 - F_T(t_{obs})$$ (6)
Where ASL is less than 0.1, we have borderline evidence against H_0, if ASL<0.05 reasonably strong evidence against H_0, if ASL<0.025 strong evidence against H_0, if ASL<0.01 very strong evidence against H_0.

If we are in situation 1 the variances are known

$$ASL = P(Z > \frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}}) = 1 - \Phi\left(\frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}}\right)$$

when the $\Phi(.)$ is the Laplace function, probability density function of standard normal distribution.

ASL calculation, when we know variances using R program:

$$ASL < 1 - \text{pnorm}((\text{mean}(x) - \text{mean}(y))/\text{sqrt}(\text{var}(x)/n + \text{var}(y)/m))$$

The variances are known, and equal: $F = N(\mu_X, \sigma^2)$,

$G = N(\mu_Y, \sigma^2)$

then $H_0: T \sim N(0, \sigma^2(\frac{1}{n} + \frac{1}{m}))$ and ASL calculate in this way:

$$ASL = P(Z > \frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}}) = 1 - \Phi\left(\frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}}\right)$$

If the variances are unknown, bat equal as in situation 2, the test statistic T has Student’s t-distribution with $n+m-2$ df (degrees of freedom), then ASL calculate in this way:

$$ASL = P(t_{df} > \frac{\bar{x} - \bar{y}}{\hat{\sigma} \sqrt{1/n + 1/m}})$$

where standard estimate for σ is

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{m} (y_i - \bar{y})^2}{(n + m - 2)}}.$$
The bootstrap achieved significance level (ASL\textsubscript{boot})

A bootstrap hypothesis test is based on a test statistic \(T \). To emphasize that a test statistic need not be an estimate of a parameter, we denote it here by \(T(Z) \). In our example we have \(T(Z) = \bar{X} - \bar{Y} \). The achieved significance level is:

\[
ASL = P(T(Z) \geq t_{obs} | H_0)
\]

The quantity \(t_{obs} \) is fixed at its observed value and the random variable \(Z \) has a distribution specified by the null hypothesis \(H_0 \). Call this distribution \(F_T \). Bootstrap hypothesis testing uses a “plug-in” style estimate for \(F_T \). Denote the combined sample by \(Z \) and let its empirical distribution be \(\hat{F}_0 \), putting probability \(1/(n+m) \) on each member of \(Z \). Under \(H_0 \), \(\hat{F}_0 \) provides a nonparametric estimate of the common population that gave rise to both \(x \) and \(y \).

Algorithm 1. (B. Efron and R.j Tibshirani, 1993, p. 221).

1. Draw \(R \) samples of size \(n + m \) with replacement from \(Z \).
 Call the first \(n \) observations \(x^\ast \) and the remaining \(m \) observation \(y^\ast \).
2. Evaluate \(T(Z^{\ast r}) = \bar{x}^\ast - \bar{y}^\ast \), \(r = 1,...,R \).
3. Approximate \(ASL_{boot} \) by

\[
\hat{ASL}_{boot} = \frac{\text{number}\{T(Z^{\ast r}) \geq t_{obs}\}}{R}
\]

When we wish to perform a two-tailed test, and suppose that, the distribution of \(T \) is symmetrically distribution around zero, then, bootstrap ASL calculated in this way:

\[
\hat{ASL}_{boot} = \frac{\text{number}\{|T(Z^{\ast r})| \geq t_{obs}\}}{R}
\]

If we are not willing to make this assumption, we can use the equal-tail bootstrap ASL (MacKinnon 2007, 4)
The Bootstrap Methods to Test the Equality of Two Means

\[A\hat{SL}_{boost} = 2\min\left\{ \frac{\text{number}\{T(Z^r) \geq t_{obs}\}}{R}, \frac{\text{number}\{T(Z^r) < t_{obs}\}}{R} \right\} \] (13)

A similar definition for p-value has also given A.C. Davison and D.V. Hinkley 1997,

\[p_{boost} = \text{Prob}(T^* \geq t | \hat{F}_0) \]. We can use this in nonparametric bootstrap test, \(p_{boost} \) to approximate by \(p = \frac{1 + \text{number}\{t^r \geq t\}}{R + 1} \)

using \(t^1, t^2, \ldots, t^R \) from R bootstrap samples.

More accurate testing can be obtained through the use of a studentized statistic. If we are not willing to assume that the variances in the two populations are equal, we could base the test statistic (4). With normal populations, the quantity (4) no longer has a Student’s \(t \) distribution.

The equal variance assumption is attractive for the \(t \)-test. In considering a bootstrap hypothesis test for comparing the two means, there is no compelling reason to assume equal variances and hence we don’t make that assumption. The algorithm (B. Efron and R.J. Tibshirani, 1993, p. 224) for computation of the bootstrap test statistic for testing equality of means:

1. Let \(\hat{F} \) put equal probability on the points \(\hat{X}_i = X_i - \bar{X} + \bar{Z} \) , \(i = 1,\ldots,n \), and \(\hat{G} \) put equal probability on the points \(\hat{Y}_i = Y_i - \bar{Y} + \bar{Z} \) , \(i = 1,\ldots,m \), where \(\bar{X} \) and \(\bar{Y} \) are the group means and \(\bar{Z} \) is the mean of the combined sample.
2. Form R bootstrap data sets \((X^*, Y^*)\) where \(X^* \) is sampled with replacement from \(\hat{X}_1,\ldots,\hat{X}_n \) and \(Y^* \) is sampled with replacement from \(\hat{Y}_1,\ldots,\hat{Y}_m \).
3. Evaluate \(T(.) \) defined by (3) on each data set,
The Bootstrap Methods to Test the Equality of Two Means

\[T(Z^r) = \frac{\bar{X}^* - \bar{Y}^*}{\sqrt{s^*_X / n + s^*_Y / m}}, \quad r = 1, \ldots, R \quad (14) \]

4. Approximate \(ASL_{boot} \) by \(ASL_{boot} = \text{number}\{T(Z^r) \geq t_{obs}\} / R \), where \(t_{obs} \) is the observed value of the statistic.

2. SIMULATIONS IN R

2.1 Bootstrap methods for hypothesis test in R program
Suppose we have two independent random samples, a random sample of size 50 is taken from \(X \sim N(10,5) \) and a random sample of size 40 is taken from \(Y \sim N(10,8) \). We know that difference of means is 0 and the variances are unequal in this case.

The null and alternative hypothesis:
\[H_0 : \mu_X - \mu_Y = 0 \quad \text{vs.} \quad H_a : \mu_X - \mu_Y \neq 0 \]

We use the methods bootstrap in R for test the hypothesis. The commands for this simulation will be mentioned in the appendix A1.

![Figure 1 Histogram of bootstrap replications of statistics T(x). Red line is observation t-value.]

We calculated \(ASL_{boot} = 0.6317 \). This is bigger than 0.05, then we come to the conclusion that null hypothesis is true with significant level \(\alpha = 0.05 \), as we expected.
2.2 Simulations. Estimate of type I error

Type I error is the error of rejecting a null hypothesis when it is actually true.

State the random variables and the parameters in words. X- the first random variable, Y- the second variable, μ_X - mean of first random variable, μ_Y - mean of first random variable.

Null hypothesis and alternative hypothesis:

$$H_0: \mu_X - \mu_Y = 0 \text{ vs. } H_a: \mu_X - \mu_Y \neq 0$$

H_0: true difference in means is equal to 0 versus H_a: true difference in means is not equal to 0.

We used R program for estimate of type I error and this results are shown in tables below. The commands for those simulations will be mentioned in the appendix A2.

In Table 1 and 2 the random variable are taken from normal distribution. We take 1000 Monte Carlo simulation, for any Monte Carlo simulation we find bootstrap distribution for difference of means and calculate bootstrap ASL for any of them. Several numbers for bootstrap replicate are taken, $R=99$, $R=999$ and $R=9999$. For more Monte Carlo simulation see Pierre Lafaye de Micheaux and Viet Anh Tran 2016.

<table>
<thead>
<tr>
<th>Table1: Estimate of error type I. $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$. The variances are unknown but equal. MC = 1000.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation with $\mu_X = \mu_Y = 0$, $\sigma_X^2 = \sigma_Y^2 = 8$, $\alpha = 0.05$, $n = 10$, $m = 15$</td>
</tr>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>Two sample t-test</td>
</tr>
<tr>
<td>Bootstrap method 1</td>
</tr>
<tr>
<td>Simulation with $\mu_X = 10$, $\sigma_X^2 = \sigma_Y^2 = 8$, $\alpha = 0.05$, $n = 10$, $m = 15$</td>
</tr>
<tr>
<td>Two sample t-test</td>
</tr>
</tbody>
</table>
Ilir Palla, Lorenc Ekonomi- The Bootstrap Methods to Test the Equality of Two Means

<table>
<thead>
<tr>
<th>Bootstrap method 1</th>
<th>0.053</th>
<th>0.060</th>
<th>0.044</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation with $\mu_X = \mu_Y = 10, \sigma_X^2 = \sigma_Y^2 = 8, \alpha = 0.05, n = 100, m = 80$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two sample t-test</td>
<td>0.050</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>Bootstrap method 1</td>
<td>0.049</td>
<td>0.049</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Table 2: Estimate of error type I. $X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2)$. The variances are unknown but unequal. MC = 1000

Simulation with $\mu_X = \mu_Y = 10, \sigma_X^2 = 4, \sigma_Y^2 = 8, \alpha = 0.05, n = 10, m = 15$			
Methods	R=99	R=999	R=9999
Welch two sample t-test	0.058	0.051	0.05
Bootstrap method 2	0.055	0.046	0.05
Simulation with $\mu_X = \mu_Y = 10, \sigma_X^2 = 4, \sigma_Y^2 = 8, \alpha = 0.05, n = 100, m = 80$			
Welch two sample t-test	0.049	0.041	0.056
Bootstrap method 2	0.052	0.041	0.055

In Table 3 the random variable are taken from normal distribution. We take 10000 Monte Carlo simulations, for any Monte Carlo simulation we find bootstrap distribution for difference of means and calculate bootstrap ASL for any of them. Several numbers for bootstrap replicate are taken, $R=99$, $R=999$ and $R=9999$.

Table 3: Estimate of error type I. $X \sim N(\mu_X, \sigma_X^2), Y \sim N(\mu_Y, \sigma_Y^2)$. The variances are unknown but unequal. MC = 10000.

Simulation with $\mu_X = \mu_Y = 10, \sigma_X^2 = 4, \sigma_Y^2 = 8, \alpha = 0.05, n = 10, m = 15$			
Methods	R=99	R=999	R=9999
Welch two sample t-test	0.0477	0.0479	0.0514
Bootstrap method 2	0.0472	0.0498	0.0546

In Table 4 the random variable are taken from exponential distribution, while in table 5 the random variable are taken from gamma distribution. We take 1000 Monte Carlo simulation, for any Monte Carlo simulation we find bootstrap distribution for difference of means and calculate bootstrap ASL for any of them. Several numbers for bootstrap replicate are taken, $R=99$, $R=999$ and $R=9999$.
Ilir Palla, Lorenc Ekonomi - The Bootstrap Methods to Test the Equality of Two Means

Table 4: Estimate of type error type I. $X \sim E(\lambda)$, $Y \sim E(\lambda)$,

<table>
<thead>
<tr>
<th>Methods</th>
<th>$R=99$</th>
<th>$R=999$</th>
<th>$R=9999$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two sample t-test</td>
<td>0.056</td>
<td>0.042</td>
<td>0.045</td>
</tr>
<tr>
<td>Bootstrap method 1</td>
<td>0.054</td>
<td>0.049</td>
<td>0.047</td>
</tr>
<tr>
<td>Two sample t-test</td>
<td>0.044</td>
<td>0.047</td>
<td>0.043</td>
</tr>
<tr>
<td>Bootstrap method 2</td>
<td>0.044</td>
<td>0.052</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Table 5: Estimate of type error type I. $X \sim \text{Gamma}(shape = 3, scale = 2)$, $Y \sim \text{Gamma}(shape = 3, rate = 2)$,

<table>
<thead>
<tr>
<th>Methods</th>
<th>$R=99$</th>
<th>$R=999$</th>
<th>$R=9999$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two sample t-test</td>
<td>0.035</td>
<td>0.062</td>
<td>0.041</td>
</tr>
<tr>
<td>Bootstrap method 1</td>
<td>0.039</td>
<td>0.065</td>
<td>0.042</td>
</tr>
<tr>
<td>Welch two sample t-test</td>
<td>0.056</td>
<td>0.045</td>
<td>0.053</td>
</tr>
<tr>
<td>Bootstrap method 2</td>
<td>0.055</td>
<td>0.047</td>
<td>0.055</td>
</tr>
</tbody>
</table>

CONCLUSION

The main practical difficulty with hypothesis test comes in calculating the ASL (5). In order to actually calculate the ASL, we had to either approximate the null hypothesis variance as in (9), Student’s method, but only applied to the normal situation. In considering a bootstrap hypothesis test for comparing the two means, there is no compelling reason to assume equal variances and hence we don’t make that assumption. Bootstrap methods performance is given in the above tables.
APPENDIX

A1. Calculate ASL with bootstrap method

```r
sim.x <- rnorm(50,10,5); n.x=length(sim.x);
mean.x=mean(sim.x);var.x=var(sim.x)
sim.y <- rnorm(40,10,8); n.y <- length(sim.y); mean.y <- mean(sim.y)
var.y <- var(sim.y);
t.obs <- (mean.x-mean.y)/sqrt(var.x/n.x + var.y/n.y)
total <- c(sim.x,sim.y); mean.tot <- mean(total)
x.tilde = sim.x - mean.x + mean.tot; y.tilde = sim.y - mean.y + mean.tot;
R=9999
mean.x.star <- var.x.star <- numeric(); mean.y.star <- var.y.star <- numeric()
t.star <- numeric()
# Start the bootstrap procedure
for (r in 1:R){
x.tilde.star <- sample(x.tilde, replace=TRUE)
mean.x.star[r] <- mean(x.tilde.star)
var.x.star[r] = var(x.tilde.star)
y.tilde.star <- sample(y.tilde, replace=TRUE)
mean.y.star[r] <- mean(y.tilde.star)
var.y.star[r] <- var(y.tilde.star)
t.star[r] <- (mean.x.star[r]-mean.y.star[r])/sqrt(var.x.star[r]/n.x + var.y.star[r]/n.y)
}
# finish the bootstrap procedure

# Calculate the approximate ASL
ASL.star <- sum( abs(t.star) > abs(t.obs))/(R+1)
hist(t.star,freq = FALSE,col = "5", main="Bootstrap estimations",
xlab="Bootstrap values")
box()
abline(v=t.obs,col="red",lwd=3,lty=1); paste("ASL.star =",ASL.star)
```
A.2 Testing hypothesis. Two sample t-test, Welch two sample t-test, bootstrap methods

H0: true difference in means is equal to 0. Type I error estimates.

Case 1.1: First case variables are normal. Variances are unknown but equal.

Testing with two sample t-test and with bootstrap method1.
rm(list=ls())
library(bootstrap)
We define the function as follows
diff.means <- function(x,n1) {
 ifelse(length(x) <= n1,
 stop("attention !! n.1 must be less than length(x)"),
 mean(x[1:n1]) - mean(x[(n1+1):length(x)])
)
}
alpha<0.05 # Ha: true difference in means is not equal to 0 (two-sided)
x.var=8; x.mean=10; x.n=10; y.var=8; y.mean=10; y.n=15
decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric()
MC=1000; R.vec <- c(99,999,9999); error1.boot <- error1.mc <- numeric()
R.ind=0
for (R in R.vec) {
 R.ind = R.ind+1
 for(mc in 1:MC) {
 x<-rnorm(x.n,x.mean,sqrt(x.var)); y<-rnorm(y.n,y.mean,sqrt(y.var));
 total=c(x,y)
 decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal = TRUE)$p.value < alpha,0,1)
 t.obs = mean(x)-mean(y)
 # Bootstrap method 1
 d.boot <- bootstrap(total,nboot=R,theta=diff.means,n1 = x.n)$thetastar
 p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
 decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
 }
 # finish Monte Carlo cycle
 error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-
 sum(decision.mc)/MC
 # paste ("error1.Monte Karlo:","error1.mc)
 # paste ("error1.bootstrap:","error1.boot)
}
Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE)
dimnames(Results) <- list(c("boot.nr","Two sample t-test","Bootstrap method"))
Results

Case 1.2: Test with normality assumption. Variances are unknown and unequal.
Testing with Welch two sample t-test and with bootstrap method 2.

rm(list=ls())
library(bootstrap)
#We define the function as follows
diff.means.sd <- function(x,n1) {
 ifelse(length(x) <= n1, stop("attention !! n.sample must be less than length(x)",call.=FALSE,domain=NA),
 (mean(x[1:n1]) - mean(x[(n1+1):length(x)])) /sqrt((var((x[1:n1]))/n1+var(x[(n1+1):length(x)])/(length(x)-n1))))
}
alpha<-0.05 # Ha: true difference in means is not equal to 0 (two-sided)
x1.var=4; x1.mean=10; x1.n=10; y1.var=8; y1.mean=10; y1.n=15
decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric()
MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- numeric()
R.ind=0
for (R in R.vec) { ## 1
 R.ind = R.ind+1
 for(mc in 1:MC) { ## 2
 x1<-rnorm(x1.n,x1.mean,sqrt(x1.var)); y1<-rnorm(y1.n,y1.mean,sqrt(y1.var))
 total=c(x1,y1); x<-x1-mean(x1)+mean(total); y<-y1-mean(y1)+mean(total)
 decision.mc[mc]=ifelse(t.test(x1,y1,alternative ="two.sided", var.equal = FALSE)$p.value < alpha,0,1)
 t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.n+var(y1)/y1.n)
 d.boot <- bootstrap(total,nboot=R,theta=diff.means.sd,n1 = x1.n)$thetastar
 p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
 decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
 } # finish Monte Carlo cycle
 error1.mc[R.ind] = 1-sum(decision.mc)/MC; error1.boot[R.ind] = 1-sum(decision.boot)/MC
 # paste ("error1.Monte Carlo:",error1.mc)
 # paste ("error1.bootstrap:",error1.boot)
Ilir Palla, Lorenc Ekonomi- The Bootstrap Methods to Test the Equality of Two Means

}
Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE)
dimnames(Results) <- list(c("boot.nr","Welch two sample t-test","Bootstrap method"))
Results

Case 2.1 Difference means of two exponential distribution variables.

Two sample t-test and bootstrap method 1. Ha: true difference in means is not equal to 0.

rm(list=ls())
diff.means <- function(x,n1) {
 ifelse(length(x) <= n1,
 stop("attention !! n.sample must be less than length(x)", call.=FALSE,
 domain=NA),
 mean(x[1:n1]) - mean(x[(n1+1):length(x)])}
rate.x.exp=0.5; x.exp.n=10;rate.y.exp=0.5; y.exp.n=15
decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric()
alpha<0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <-error1.mc <- numeric()
R.ind=0
for (R in R.vec) { ## 1
 R.ind = R.ind+1
 for(mc in 1:MC) { ### start Monte Carlo cycle
 x<-rexp(x.exp.n,rate = rate.x.exp); y<-rexp(y.exp.n,rate.y.exp); total=c(x,y)
 decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal =
 TRUE)$p.value < alpha,0,1)
 t.obs = mean(x)-mean(y)
 # Bootstrap method 1
 d.boot <-bootstrap(total,nboot=R,theta=diff.means,n1 = x.exp.n)$thetastar
 p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
 decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
 } #finish Monte Carlo cycle
 error1.mc[R.ind] = 1-sum(decision.mc)/MC; error1.boot[R.ind] = 1-
 sum(decision.boot)/MC
 # paste ("error1.Monte Carlo:",error1.mc); # paste
 ("error1.bootstrap:";error1.boot)
}
Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE)
dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap method"))
Case 2.2 Difference means of two exponential distribution variables.
Two sample test and bootstrap method 2.

```r
case2.2 <- function(x, n1) {
  ifelse(length(x) <= n1, stop("attention !! n.sample must be less than length(x)", call.=FALSE, domain=NA), 
    (mean(x[1:n1]) - mean(x[(n1+1):length(x)]))/sqrt((var(x[1:n1])/n1 + var(x[(n1+1):length(x)])/(length(x)-n1)))
  
  rate.x1.exp=0.5; x1.exp.n=10; rate.y1.exp=0.5; y1.exp.n=15; decision.mc <- numeric()
  decision.boot <- numeric(); p.value.boot <- numeric()
  alpha<0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <- error1.mc <- numeric()
  R.ind=0
  for (R in R.vec) { # start Monte Carlo cycle
    R.ind = R.ind+1
    for(mc in 1:MC) { # start Monte Carlo cycle
      x1<-rexp(x1.exp.n,rate = rate.x1.exp); y1<-rexp(y1.exp.n,rate=rate.y1.exp);
      total=c(x1,y1)
      x <- x1-mean(x1)+mean(total); y <- y1-mean(y1)+mean(total)
      decision.mc[mc]=ifelse(t.test(x1,y1, alternative ="two.sided", var.equal = FALSE)$p.value < alpha, 0, 1)
      t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.exp.n+var(y1)/y1.exp.n)
      # Bootstrap method 2
      d.boot <- bootstrap(total,nboot=R,theta=diff.means.sd,n1 = x1.exp.n)$thetastar
      p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
      decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
    } # finish Monte Carlo cycle
    error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-sum(decision.mc)/MC
    # paste ("error1.Monte Carlo:";error1.mc); # paste
    ("error1.bootstrap:";error1.boot)
  }
  Results <- matrix(c(R.vec,error1.mc, error1.boot), nrow=3, byrow=TRUE)
  dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap method"))
  Results
```

Results
Case 3.1 Difference means of two gamma distribution variables.

#Ha: true difference in means is not equal to 0.
r <- function(x,n1) {
 ifelse(length(x) <= n1,
 stop("attention !! n.sample must be less than length(x)", call.=FALSE, domain=NA),
 mean(x[1:n1]) - mean(x[(n1+1):length(x)])
}
x.shape=3; x.scale=2; x.gamma.n=10; y.shape=3; y.scale=2; y.gamma.n=15
decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric()
alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <- error1.mc <- numeric()
R.ind=0
for (R in R.vec) { # 1
 R.ind = R.ind+1
 for(mc in 1:MC) { # start Monte Carlo cycle
 x<-rgamma(x.gamma.n,shape = x.shape, scale=x.scale)
 y<-rgamma(y.gamma.n,shape = y.shape, scale=y.scale)
 total=c(x,y)
 decision.mc[mc]=ifelse(t.test(x,y,alternative ="two.sided", var.equal = TRUE)$p.value < alpha,0,1)
 t.obs = mean(x)-mean(y)
 #Bootstrap method 1
 d.boot <- bootstrap(total,nboot=R,theta=diff.means,n1 = x.gamma.n)$thetastar
 p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
 decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
 } ### finish Monte Carlo cycle
 error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-sum(decision.mc)/MC
 # paste ("error1.Monte Carlo:",error1.mc); # paste ("error1.bootstrap:",error1.boot)
}
Results <- matrix(c(R.vec,error1.mc, error1.boot), nrow=3,byrow=TRUE)
dimnames(Results) <- list(c("boot.nr", "Welch two sample t-test", "Bootstrap method"))
Results
Case 3.2: The second case, difference means of two gamma distribution variables.

Welch two sample test and bootstrap method 2.

```r
easyRead(rm(list=ls())
diff.means.sd <- function(x,n1) {
  ifelse(length(x) <= n1,
    stop("attention !! n.sample must be less than length(x)",call.=FALSE,domain=NA),
    (mean(x[1:n1]) - mean(x[(n1+1):length(x)])) /sqrt((var((x[1:n1]))/n1+var(x[(n1+1):length(x)])/(length(x)-n1)))
  }
x1.shape=3; x1.scale=2; x1.gamma.n=10; y1.shape=3; y1.scale=2;
y1.gamma.n=15
decision.mc <- numeric(); decision.boot <- numeric(); p.value.boot <- numeric()
alpha<-0.05; MC=1000; R.vec <- c(99,999,9999); error1.boot <- error1.mc <- numeric()
R.ind=0
for (R in R.vec) { ## 1
  R.ind = R.ind+1
  for(mc in 1:MC) { ### start Monte Carlo cycle
    x1<-rgamma(x1.gamma.n,shape = x1.shape, scale = x1.scale)
y1<-rgamma(y1.gamma.n,shape = y1.shape, scale = y1.scale)
total=c(x1,y1)
x<-x1-mean(x1)+mean(total); y<-y1-mean(y1)+mean(total)
decision.mc[mc]=ifelse(t.test(x1,y1,alternative ="two.sided", var.equal = FALSE)$p.value < alpha,0,1)
t.obs = (mean(x1)-mean(y1))/sqrt(var(x1)/x1.gamma.n+var(y1)/y1.gamma.n)

  ## Bootstrap method 2
  d.boot <- bootstrap(total,nboot=R,theta=diff.means.sd,n1 = x1.gamma.n)$thetastar
  p.value.boot[mc] <- sum(abs(d.boot) > abs(t.obs))/(R+1)
decision.boot[mc]=ifelse(p.value.boot[mc]<alpha,0,1)
  }
  ### finish Monte Carlo cycle
  error1.boot[R.ind] = 1-sum(decision.boot)/MC; error1.mc[R.ind] = 1-
  sum(decision.mc)/MC
## paste ("error1.Monte Carlo:",error1.mc); ## paste ("error1.bootstrap:",error1.boot)
}
Results <- matrix(c(R.vec,error1.mc, error1.boot),nrow=3,byrow=TRUE)
dimnames(Results) <- list(c("boot.nr","Welch two sample t-test","Bootstrap method"))
Results
```

REFERENCES

8. Welch, B.L. 1947. The generalization of 'student's' problem when several different population variances are involved. *Biometrics*. 34, Issue 1/2, (January), 28-35.