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Abstract
Let R be a ring, (S,<) a strictly ordered monoid.

Properties of the ring [[RS’S]] of generalized power series with
coefficients in R and exponents in S are considered in this
paper. We devoted to introduce and study linearly S -quasi-
Armendariz ring, which is unify the notions of linearly S -
Armendariz ring and S-quasi-Armendariz ring. It is shown
that, if R is linearly S -quasi-Armendariz ring, Uis a

nonempty subset in R is a two-sided ideal of R, A=1,(U) for all
seS, then I:%A\is linearly S -quasi-Armendariz. Also, we prove

that, R is semiprime if and only if R is reduced linearly S -
quasi-Armendariz. Moreover, a necessary and sufficient
conditions are given for rings under which the classical left ring
of quotients of R, is linearly S -quasi-Armendariz.
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1. INTRODUCTION

All rings considered here are associative with identity. We will
write monoids multiplicatively unless otherwise indicated. If R
is aring and X is a nonempty subset of R, then the left (right)
annihilator of X in R is denoted by I, (X)(r;(X)) Any concept
and notation not defined here can be found in Elliott and
Ribenboim [6] and Ribenboim [20].

Rege and Chhawchharia [14] introduced the notion of an
Armendariz ring. They defined a ring R to be an Armendariz
ring if whenever polynomials

f(x)=a, +ax+..+a,x",9(x) =b, +bx+...+b x" € R[X]
satisfy f(x)g(x) =0, then ab; =0for each i, j. (The converse is

always true.) The name “Armendariz ring” was chosen because
Armendariz [5, Lemma 1] had noted that a reduced ring
satisfies this condition. Reduced rings (i.e., rings with no
nonzero nilpotent elements). Some properties of Armendariz
rings have been studied in E. P. Armendariz [5], Anderson and
Camillo [3], Kim and Lee [16], Huh, Lee and Smoktunowicz [2],
and Lee and Wong [21].

By Kim et al. in [15]. A ring R is said to be power-
serieswise  Armendariz if whenever power  series
f(x)=a, +axX+..+a,x",g(x) =b, +bx+..+b x" e R[[x]]
satisfy
f(x)g(x) =0then ab; =0for all i, j. Armendariz rings were

generalized to quasi-Armendariz rings by Hirano [23]. A ring R
is called quasi-Armendariz provided that aRb; =0for all |, j

whenever f(x)=a,+ax+..+aXx",g(X)=b,+bx+..+b X" eR[X] satisfy
f(x)RIxJg(x) =0.

Let (S,<)be an ordered set. Recall that (S,<)is artinian if

every strictly decreasing sequence of elements of S is finite,
and that (S,<)is narrow if every subset of pairwise order-
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incomparable elements of S is finite. Thus, (S,<)is artinian
and narrow if and only if every nonempty subset of S has at
least one but only a finite number of minimal elements. Let S
be a commutative monoid. Unless stated otherwise, the
operation of S will be denoted additively, and the neutral
element by 0. The following definition is due to Elliott and
Ribenboim [6].

Let (S,<)is a strictly ordered monoid (that is, (S,<)is an
ordered monoid satisfying the condition that, if s,s’,t€ S and
§<¢', then s+t<s'+t, and R a ring. Let HRS'SJJ be the set of
all maps f:S— Rsuch that supp(f) ={seS|f(s)=0}. is

artinian and narrow. With pointwise addition, HRS'S]] is an
abelian additive group. For every seSand f,ge [[RS’S]], let
Xs(f,9)={(u,v) eSxS|u+v=sf(u)=0,9(v) #0}. It follows
from Ribenboim [20, 4.1] that X (f,g)1is finite. This fact allows

one to define the operation of convolution:

(fg)s) = D fu)gv).

(uVv)eXs(f,9)

Clearly, supp( fg) € supp(f) + supp(g), thus by Ribenboim
[18, 3.4] supp( fg) is artinian and narrow, hence f,g e [[RS’S]].

With this operation, and pointwise addition, [[RS’S]] becomes an
associative ring, with identity element €, namely
e(0) =1,e(s) =0for every 0=seS. Which is called the ring of

generalized power series with coefficients in R and exponents
in S. Many examples and results of rings of generalized power
series are given in Ribenboim ([17]—[20]), Elliott and Ribenboim
[6] and Varadarajan ([12], [13]). For example, if S =N U{0}and

< is the usual order, then [[R"*®*<]]= R[[x]], the usual ring of
power series. If S is a commutative monoid and <is the trivial
order, then [[R®°]]=R[S],, the monoid ring of S over R.
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Further examples are given in Ribenboim [18]. To any reR
ands € S, we associate the maps C,,C, € [[R>*]] defined by

cr(x)={r’X=° es(x>={1’X=S

0, otherwise, 0, otherwise,
It is clear that r —C,is a ring embedding of R into [[RS’S]],

S<—€,, 1s a monoid embedding of S into the multiplicative

monoid of the ring [[RS’S]], and Cc e, =e.,. Recall that a monoid
S is torsion-free if the following property holds: If s,te S, if k
is an integer, K >1and ks=kt, then s=t.

If R is a ring and S is a strictly ordered monoid, then
the ring R is called a generalized Armendariz ring if for each
f,ge [[RS’S]] such that fg=0implies that f(u)g(v)=0 for
each U esupp(f)and vesupp(g). In Liu. [24] called such ring
S -Armendariz ring. Ali and Elshokry in [4], said that, if R is a
ring, S be a torsion-free and cancellative monoid and < astrict
order on S, then the ring R 1is called a generalized quasi-
Armendariz ring (S- quasi-Armendariz), if for each

f,ge[R%*[lsuch that f|[R**[lg=0, then f(U)Rg(V)=0 for
eachu,veSsS.

In this paper, we introduce the new concept of linearly
S -quasi-Armendariz which is unify the notions of S -quasi-
Armendariz ring and linearly S -Armendariz (they defined that

a ring R is linearly S-Armendariz, if whenever f,ge [[RS'S]]

such that fg =0, then ab; =0for alla,,a,,by,b, € R, such that

b, =ah, =ab, =ab, =0, where f=c, +c,e,9=c, +c,e,.
It is shown that, () If R is linearly S -quasi-Armendariz ring,
U is a nonempty subset in R is a two-sided ideal of R,

A=1,(U)for all seS, then R/A\is linearly S -quasi-

Armendariz. () For a two-sided ideal | of R, if F\%is a
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linearly S -quasi-Armendariz ring and | is a semiprime ring
without identity, then R is linearly S -quasi-Armendariz.
Moreover, (1) Under a necessary and sufficient conditions, if R
is a linearly S -quasi-Armendariz, then Q is a linearly S -quasi-
Armendariz, where Q is the classical left ring of quotients of R.
Consequently, some results of a linearly S -quasi-Armendariz
are given.

Clark defined quasi-Baer rings in [22]. A ring R is
called quasi-Baer if the left annihilator of every left ideal of R
1s generated by an idempotent. Birkenmeier, Kim and Park in
[8] introduced the concept of principally quasi-Baer rings. A
ring R is called left principally quasi-Baer (or simply left p.q.-
Baer) if the left annihilator of a principal left ideal of R is
generated by an idempotent. Similarly, right p.q.-Baer rings
can be defined. A ring is called p.q.-Baer if it is both right and
left p.q.-Baer. Observe that biregular rings and quasi-Baer
rings are p.q.-Baer. For more details and examples of left p.q.-
Baer rings, (see [7] and [8]). A ring R is called a right (resp.,
left) PP-ring if every principal right (resp., left) ideal is
projective (equivalently, if the right (resp., left) annihilator of
an element of R is generated (as a right (resp., left) ideal) by an
idempotent of R).

2. Linearly S-quasi-Armendariz rings

Definition 2.1. Let R be a ring, (S,<)a strictly totally ordered

monoid. We say that
R is linearly S -quasi-Armendariz, if for all Se€ S \{l}and

a,,8,,b,,b, € R, whenever
(c,, +c,e)[R**1I(c, +c,e,) =0, then aRb;, =0, for all
0<i<10<j<1.
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Definition 2.2. Let S be a ring, (S,<)a strictly totally ordered
monoid. We say that R is linearly S -Armendariz, if for all
s € S \{I} whenever (c, +c,e)(c, +C,€)=0in

[R*<]], then ajb, = asb, = ab, =ajb, =0in R.

It can be easily checked that both S -quasi-Armendariz rings
and linearly S -Armendariz rings are linearly S -quasi-
Armendariz. But there exist linearly S -quasi-Armendariz rings
which are not linearly S -Armendariz e.g., Mat,(R)over a
linearly S -quasi-Armendariz ring R is linearly S -quasi-
Armendariz by [1, Theorem 2.3], but Mat,(R) is not linearly S -
Armendariz by [14] (or [16, Example 1]), even in the case where
R is commutative and [[R**]] = R[X].Also, the construction in
[21, Example 3.2] shows that there exist commutative linearly
S -quasi-Armendariz rings which are not S -quasi-Armendariz,
even in the case, S be the additive monoid N U {0}, with the
trivial order, R be a ring. Then R is an S -quasi-Armendariz
ring if and only if R is a quasi-Armendariz ring in the usual
sense. This is so because in this case the generalized power
series ring [[RS’S]] 1s isomorphic to the ordinary polynomial ring
R[X].

The next Lemma appeared in [9, Lemma 1.2].

Lemma 2.3. For any ring R the following are equivalent:
(1) For each element acR, a'is an ideal of R, where
a'={beR:ab=0}.
(2) Any annihilator right ideal of R is an ideal of R.
(3) Any annihilator left ideal of R is an ideal of R.
(4) For any a,b e R,ab=0impliesaRb=0.
Every reduced ring (i.e., if there exists no nonzero

nilpotent elements) is semicommutative but the converse does
not hold in general. There exists a linearly S -quasi-
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Armendariz ring which is not semicommutative [2, Example
14], even in the case where R 1is commutative and

[[R*]]1=R[x],and commutative (hence semicommutative)

rings need not to be linearly S -quasi-Armendariz. Here we
have the following.

Proposition 2.4. Let [[RS’S]] over a ring R be
semicommutative, (S,<) a strictly totally ordered monoid. If R

is (linearly) S-quasi-Armendariz, then R 1is (linearly) S -
Armendariz.

Proof. Since the two cases have the same argument, we only
give the proof of S-Armendariz case. Assume that the

generalized power series ring [[RS’S]] over R is S-quasi-
Armendariz and semicommutative. Let f,g e [[RS’S]] such that
fg =0. Then we get f[[RS’S]]g =0 and so f(u)Rg(v)=0, for all
u,veS. Thus, f(u)g(v) =0for all u,veS, and therefore R is

S -Armendariz.
The following result appeared in [24].

Lemma 2.5. Let R be a ring, (S,<) a strictly ordered monoid.

Then [[RS‘S]] is reduced if and only if R is reduced.

Lemma 2.6. [25] Let R be a ring, (S,<)a strictly totally
ordered monoid. Then R is a semiprime ring if and only if
HRS’S]] is a semiprime ring.

Since any reduced ring is a semiprime. Here we have.

Theorem 2.7. For a ring R, (S,<)a strictly totally ordered

monoid. We consider the following conditions:
(1) R is semiprime.
2 HRS’S]] is linearly S -quasi-Armendariz.

(3) R is linearly S -quasi-Armendariz.
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Then (1) = (2) = (3).
Proof. Observe that R is a semiprime ring if and only if so is
HRS’S]] by Lemma 2.6.
(1) = (2) Suppose that R is semiprime. Then [[RS’S]] is S-
quasi-Armendariz by [4, Proposition 2.18], and so [[RS’S]] 1s
linearly S -quasi-Armendariz.
(2) = (3) Assume that HRS’S” is linearly S -quasi-Armendariz.
Let f=c,+c,e, g=c, +C,e, € [R*<]] such that
(c,, +Cales)[[Rs'g]](CbO +¢, ) =0. Thus, we have the following
equations, for any r € R

a,rb, =0,a,rb, +a,rb, =0,a,rb, =0(*) .

Let h=c, +c,e |=Cbo+cb1ese[[RS’§]], for any teS. We

claim that h[[R**])l =0. For any d € Rand anyt €S . By (x), we
have hcl = (a,db,) + (a,db, +a,db,)e, + (a,db,)e, =0, because
e.6, =€6,. Since [[RS’S]] is linearly S -quasi-Armendariz, we
have c, [[RS‘SIkbj =0 , for all i, j. In particular, ainj =0, for

all i, J, and therefore R is linearly S -quasi-Armendariz.

Corollary 2.8. ([1, Theorem 2,7]). For a ring R, we consider
the following conditions:

(1) R is semiprime.

(2) R[X] is linearly quasi-Armendariz.

(3) R is linearly quasi-Armendariz.

Then (1) = (2) = (3).

Corollary 2.9. Let (S,<) be a strictly totally ordered monoid. If
R is a semiprime, then R is linearly S -quasi-Armendariz.
Proof. By [4, Proposition 2.18], R is S -quasi-Armendariz.

Thus, R is linearly S -quasi- Armendariz.

EUROPEAN ACADEMIC RESEARCH - Vol. VII, Issue 1/ April 2019
520



Eltiyeb Ali, Ayoub Elshokry- On Linearly S-Quasi-Armendariz Rings

Proposition 2.10. Let (S,<)be a strictly ordered monoid and e
be a central idempotent of a ring R. Then the following
statements are equivalent:

(1) R is linearly S -quasi-Armendariz;

(2) eR and (1-€)R are linearly S -quasi-Armendariz.

Proof. (1) = (2). Suppose that R 1is linearly S -quasi-
Armendariz. Let ¢, +C,€; and

Cy, +C, € € [[(eR)®~1], such that
(c,, +c,e)Il(eR)*“11(c,, +Cy€) =0 . Note that

(c, +C,8)C, =C, +C,€eand(c, +C,€)=C, +C,e. For any
reR, (c, +c,8)c,(c, +¢,6)

= (caﬂ + cales)(ce,)(cbo + cbles) =0, and S0
(c,, + Cales)[[RS’S]](Cbo +¢,€,)=0. SinceR 1is linearly S -quasi-
Armendariz, a,Rb,=a,Rb, =aRb,=aRb, =0. Since eis
central

a,(eR)b, =0,a,(eR)b, =0,a,(eR)b, =0anda, (eR)b, =0.
Therefore, eR is linearly S -quasi-Armendariz. Similarly, we
can show that (1—€)Ris linearly S -quasi-Armendariz.

(2)= (1. Assume that both eR and (1—e€)Rare linearly S -
quasi-Armendariz. Letc, +C,€and C, +C,€ € [[R**]]be such
that (c, +c,e)[[R**]I(c, +c,e)=0.

We will show that a,Rb, =0,a,Rb, =0,a,Rb, =0and aRb, =0.

For any rerR,
C.(Cy, +C,8)(C)C. (Cy, +C8) =C.((c, +C,8)C,(Cy, +C,8,)) =0 and
Cl—e (Cao + Cales)cl—ecr (Cl—e (Cbo + Cbles )) = O ’ SO
Ce (Cao + Cales )[[(eR)SS ]]Ce (CbO + Cbles) =0 and

Cl—e (Cao + Cales)[[(l_ eR)Syg]]cl—e (Cbo + Cbles) =0
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Since eR and (1-e)R are linearly S -quasi-Armendariz, we
have e(a,Rb,)=0,e(a,Rb)=0,e(aRb,)=0,e(a,Rb)=0 and
(1-e)(a,R,) =0, (1— €)(a,Rb,) = 0
,(1-e)(a,Rb,)=0,(1-€e)(a,Rb)) =0 and hence
a,Rb, =e(a;Rb,) + (1—e)(a,Rb,) =0,

a,Rb, = e(3,Rb;) + (L €)(a,Rb;) =0,

a,Rb, = e(a,Rby) + (1— €)(2,Rb,) =0,

a,Rb, =e(a,Rb)) + (1—e)(a,Rb,) =0, . Therefore, R is linearly S

-quasi-Armendariz.

Theorem 2.11. Let R be a ring, (S,<) a strictly totally ordered
monoid. Then the following conditions are equivalent:

(1) R1is semiprime;

(2) Ris reduced linearly S -quasi-Armendariz.

Proof. (1) = (2)Is trivial.

(2)=> (@) Let R be a reduced linearly S -quasi-Armendariz. In
particular for any C, €[[R**]]be such thatC_[[R**]]C, =0,

thenaRa=0. Thus, by reduced (aR)* = 0.
Thereforea=0.

Corollary 2.12. Let R be a ring, (S,<)a strictly ordered

monoid. If R is reduced ring, the R 1is linearly S -quasi-

Armendariz.

Theorem 2.13. Let R be a ring, (S,<)a strictly ordered

monoid.
(1) If R is linearly S -quasi-Armendariz ring, U is a nonempty
subset in R is a two-sided ideal of R, A=1,(U)for all seS.

Then %is linearly S -quasi-Armendariz.
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(2) For a two-sided ideal | of R, if F\%is a linearly S -quasi-

Armendariz ring and | is a semiprime ring without identity,
then R is linearly S -quasi-Armendariz.

Proof. (1) Assume that A=r;(U)is a two sided of linearly S -
quasi-Armendariz ring R forg#U c R. Let a=a+ AforaeR.
Suppose C; +C, e and C, +Cy8 € [[R*1]

with (G5 +C.e)[[R*7TI(c; +c;6,) = 0. We claim that

3 (R0, = 0,3,(%/)b, =0
51(%)50 =0 andél(%)ﬁl =0.
From (Ca0 + Caqes)[[(F%A)S'S]](CE0 + cﬁes) = 6, we get

(s, +C58)c, (5, +C;8,)=0forany Fe %

Hence a,rb,, a,rb, +a,rb,,a,rb, € A,

and so ta,rb, =0,t(a,rb, +arb,) =0,tayrb, =0for any reR
and teU . Thus,

c.(C,, +Cales)[[Rs‘S]](Cbo +¢C,6)=0. Since R 1is linearly S-
quasi-Armendariz, we have

t(a,rb,) =0,t(a,rb) =0,t(a,rby) =0and t(arb,)=0for any
teU, and hence

a,rb, = A a,rb, < A arb, = Aand a,rb, < A.Thus,

3 (/b =0,3,(R/)b, =0,3,(R/ )b, =0and & (R/)b, =0and
therefore F‘/Ais linearly S -quasi-Armendariz.

(2) Let «c, +c,e;and C, +C,€ € [[R*<]], such that
(c, + Cales)[[RS’S]](CbO +¢,€)=0. Then we have
agrb, =0,a,rb, +a,rb, =0 and arb, =0for any reR, thus
a,Rb, =0 and aRb =0. We claim that a,Rb =0. Assume
a,Rb, # 0. Note that (b,la,R)* =0
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implies bylayR=0and so byla, =0 since bjla,R<1and |is
semiprime. Since F\%is linearly S -quasi-Armendariz, we get
a,Rb, < I,a,Rb, = I,aRb, = | and a,Rb, c I .

Then
(a,Rb,)(Ra,Rb,)* = (a,R)(b,)(Ra,Rb,Ra,)Rb, < a,R(b,)1a,(Rb,) =0

From ayrb, +a,;rb, =0 for  anyreR, we  have
0= (a,rb, +ay,rby)(uagth)* = a,rb (uath;)*
for any r,u,te Rand thus(Ra,Rb,)*=0. Since Ra,Rb, < I and

| is semiprime,
Ra,Rb, =0and so a,Rb,=0, a contradiction. Hence,

a,Rb, =0,a,Rb, =0,8,Rb, =0and a,Rb, =0 and therefore R is

linearly S -quasi-Armendariz.

Remark 2.14. LetR =27, ® Z,. It can be easily checked that R

1s a linearly S-quasi-Armendariz and semicommutative ring,
and hence I:‘%A\is linearly S -quasi-Armendariz ring for the one-
sided annihilator A of a nonempty subset in R by Theorem
2.13(1). Moreover, F%E Z, is a linearly S -quasi-Armendariz
ring for a semiprime ideal | ={0}® R of R, even in the case

where R is commutative and[[R*<]] = R[x].
Corollary 2.15. Let R be a ring, (S,<)a strictly ordered

monoid.
(1) If a ring R is semicommutative and linearly S -quasi-

Armendariz, then % is linearly S -quasi-Armendariz, where

A=1,(U)and U is a nonempty subsetin R.
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(2) If a ring R is linearly S -quasi-Armendariz and satisfies any
one of the following conditions, then I:\%A\is linearly S -quasi-

Armendariz:
* R is an abelian Baer ring and A is the one-sided annihilator
of a nonempty subset in R.

R is a quasi-Baer ring and A is the right annihilator of a
right ideal in R.
* R is an abelian right (resp., left) p.p.-ring and A is the right
(resp., left) annihilator of an elementin R.
* R is a right (resp., left) p.q.-Baer ring and A is the right
(resp., left) annihilator of a principal right (resp., left) ideal in
R.
Proof. (1) By Lemma 2.3, a ring R is semicommutative ring if
and only if any one-sided annihilator over R is a two-sided

ideal of R, and thus I:‘%A\is linearly S -quasi-Armendariz by

Theorem 2.13.
(2) If R is abelian or A is the right (resp., left) annihilator of a
right (resp., left) ideal in R, then A is a two-sided ideal of R.

Thus, % is linearly S -quasi-Armendariz by Theorem 2.13.

One can find the next definition in [11].

Definition 2.16. Let (S,<)be an ordered monoid. We say that
(5,)is an artinian narrow unique product monoid (or an
a.n.u.p. monoid, or simply a.n.u.p.) if for every two artinian and
narrow subsets X and Y of S there exists a u.p. element in the
product XY . We say that (S,<)is quasitotally ordered (and
that < is a quasitotal order on S) if < can be refined to an

order < with respect to which S is a strictly totally ordered

monoid. For any ordered monoid (S,<), the following chain of

implications holds: S is commutative, torsion-free, and
cancellative

U
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(S,<X) is quasitotally ordered
U
(S§,5)is a.n.u.p.
U
S is u.p.

The converse of the bottom implication holds if < is the trivial
order. For more details, examples, and interrelationships
between these and other conditions on ordered monoids, we
refer the reader to [10].

Let R be a semiprime left Goldie ring, and let C denote
the set of regular elements of R (that is, elements that are
neither left nor right zero-divisors). If Q =Q[':I is the classical
left ring of quotients of R. Then we have for a monoid S. The
following result generalizes [1, Theorem 2.16].

Theorem 2.17. Let R be a semiprime left Goldie ring, (S,<)a
nontrivial strictly ordered a.n.u.p. monoid. Let Q=Q|, denote

the classical left ring of quotients of R. Then the following
conditions are equivalent:

(1) R is S -quasi-Armendariz;

(2) R is linearly S -quasi-Armendariz;

(3) Q is S -quasi-Armendariz;

(4) Q is linearly S -quasi-Armendariz.

Proof. (1) = (2) Trivial.

(2) = (4) We have to show that for any p,, p;,q,,0, €Q and
seS\{}, if  (c, +c,e)lQ°*1(c, +c,8)=0,  then

Pordy = P11y =0. ()

Now, there exist a,,a;,0,,b,u € Rsuch that uis regular and
p, =u'a,q, =u"b fori =12. Furthermore, = for  some
d,,d;,ve Rwith v regular, we can write a,u” =v'd, and
au'=v'd,. Now it is easy to see that in [[R**]]we have
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(Cq, +Cdles)[[RS’£]](Cbo +¢,€,) =0, Since R is linearly S -quasi-
Armendariz, we obtain dyrb, =d;rb, =0. Now p,rqg, = p,rq, =0
follows easily, proving ().

(3) © (4) Trivial.

The following is obtained by applying the method in the proof of
Theorem 2.17.

Proposition 2.18. Let R be a semiprime left Goldie ring,
(S,2) a nontrivial strictly ordered a.n.u.p. monoid. Let A be a

multiplicatively closed subset of a ring R consisting of central
regular elements. Then R is linearly S -quasi-Armendariz if

and only if A'R is linearly S -quasi-Armendariz.
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