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Abstract 

Suppose G = (V, E, F) is a finite plane graph with vertex set 

V(G), edge set E(G) and face set F(G). A bijection  

})()()(.....,3,2,1{: GFGEGVFEV   is known as labeling of 

type (1, 1, 1). The labeling of type (1, 1, 1) is called face magic (or face 

anti-magic resp.), if all faces of a graph have same (or different resp.) 

weight. A face anti-magic labeling is called super, if the smallest 

possible labels appear on the vertices. In this paper, we deal with 

super face anti-magic labeling of type (1, 1, 1) for the subdivided 

prism graphs and we show that general graph admits super face anti-

magic labeling. 

 

Key words: Plane graph, Subdivided prism graph, SFAMT-labeled 

graph 

 

 

INTRODUCTION 

We consider all graphs are finite, simple, undirected and plane. The 

plane graph G = (V, E, F) has vertex set V(G), edge set E(G), face set 
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F(G). We follow either Wallis [1] or West [2] for most of the graph 

theory terminology and notation used in this paper. 

Graph labeling is one major research area in graph theory. 

Most of the graph labeling methods trace their origin to the concept of 

 -valuation introduced by Rosa [3]. The same concept was introduced 

by Golomb who called it a graceful labeling [4]. Various types of graph 

labelings such as graceful labeling, harmonious labeling, equitable 

labeling, cordial labeling, arithmetic labeling, Skolem graceful 

labeling, magic labeling, antimagic labeling, set-magic labeling, 

multiplicative and strongly multiplicative labeling, prime labeling, 

mean labeling and orthogonal labeling have been investigated by 

several authors. 

The concept of graph labeling has a wide range of applications 

to other branches of science such as X-ray crystallography, coding 

theory, cryptography, astronomy, circuit design and communication 

networks design. 

A labeling of a graph is any mapping that sends some set of 

graph elements to a set of numbers (usually positive integers). If the 

domain is the vertex set or edge set or the face set, the labeling is 

called respectively vertex labeling or edge labeling or face labeling. A 

bijection  })()()(.....,3,2,1{: GFGEGVFEV   is called a 

labeling of type (1, 1, 1). The weight of a face under a labeling is the 

sum of the labels (if present) carried by that face and the edges and 

vertices surrounding it. A labeling of type (1, 1, 1) is called face magic 

(or face anti-magic resp.), if all faces of a graph have same (or 

different resp.) weight. 

Lih [5] describes magic labeling of type (1, 1, 0) for wheels, 

friendship graphs and prisms. The notion of anti-magic labeling was 

introduced by Hartsfield and Ringel [14] in 1990. In graph labeling, 

various types of anti-magic labeling such as (a, d)-antimagic labeling, 

(a, d)-edge anti-magic vertex labeling, (a, d)-edge anti-magic total 

labeling, super (a, d)-edge anti-magic total labeling, (a, d)-vertex anti-

magic total labeling, super (a, d)-vertex anti-magic total labelling and 

face anti-magic labeling of planar graphs have been studied by several 

authors. The 0-antimagic labelings of type (1, 1, 1) for grid graphs and 

honeycomb are given in [6] and [7], respectively. The concept of d-

antimagic labeling of plane graphs was defined in [8]. The d-

antimagic labeling of type (1, 1, 1) for the hexagonal planar maps, 
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generalized Petersen graph P(n, 2) and grids can be found in [9–11], 

respectively. Lin et al. [12] showed that prism 3, nDn
admits d-

antimagic labeling of type (1, 1, 1) for d ∈ {2, 4, 5, 6}. The d-antimagic 

labeling of type (1, 1, 1) for 
nD and for several 7n  are described in 

[13]. 

This paper concentrate the super face anti-magic total 

(SFAMT)-labeling of type (1, 1, 1) for the subdivision prism graph. 

 

 SFAMT-LABELING FOR 
npG ,
 

 

Consider a general sub-divided prism graph
npG ,
 , where 3n  and 

1p  with all the vertices of degree 2. We define the vertex set )( ,npGV , 

edge set )( ,npGE  and face set )( ,npGF of sub-divided prism graph as 

follows (Fig. 1) 

 

}1;{)(

}11,1;{

}11,1;{

}11,1;{

},1;{},1;{

},1;{}1,1;{

}1,1;{}1,1;{)(

}1,1;{}1,1;{

}1,1;{}1;{}1;{)(

,

1

1

1

1

1

,

,

ntfGF

pkntww

pkntvv

pkntuu

pkntwypkntvy

pkntuxkntvx

kntwykntuxGE

pkntwpkntv

pkntuntyntxGV

tnp

kttk

kttk

kttk

kttktt

kttktt

kttkttnp

ktkt

ktttnp





























 

 

 
Fig 1: The graph 

npG ,
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THEOREMS OF SFAMT-LABELING 

 

Theorem 1: The subdivided prism 4,, nG np
and 1p  admits SFAMT-

labeling of type (1, 1, 1), where n and p are positive integers. 

Proof: For 4n and 1p , we define labeling 

})()()(.....,3,2,1{: GFGEGVFEV   as follows 
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The weight of 8-sided faces
tf ,8
 for each t = 1, 2, 3,....., n, is calculated 

as follows 
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Fig 2: SFAMT-Labeling for 

4,1G  

           
Fig 3: SFAMT-Labeling for 

9,1G  

Theorem 2: The subdivided prism 3,, nG np
and 1p  admits SFAMT-

labeling of type (1, 1, 1), where n and p are positive integers. 

Proof: For 3n and 1p , we define labeling 

})()()(.....,3,2,1{: GFGEGVFEV   as follows 
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The weight of (4p+4)-sided faces
tpf ,44 
 for each }3,2,1{t  is calculated 

as follows 
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Fig 4: SFAMT-Labeling for 

3,2G  

 

 
Fig 5: SFAMT-Labeling for 

3,6G  

 

CONCLUSION AND FUTURE WORK 

 

In this paper, we have studied the SFAMT-labeling of type (1, 1, 1) of 

the graphs 
npG ,
which are obtained by subdivided prism. We have seen 

that these graphs admit SFAMT-labeling for 1&4  pn and 
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1&3  pn . We close this section by raising the following open 

problems. 

 

Future Problem 1: For every ,1,3  pn the graph
npG ,
is obtained by 

m disjoint copies of the graph
npG ,
, then

npmG ,
 admits super face magic 

total (SFMT)-labeling of type (1, 1, 1). 

Future Problem 2: For every ,1,3  pn the graph
npG ,
is obtained by 

m disjoint copies of the graph
npG ,
, then

npmG ,
 admits super face anti-

magic total (SFAMT)-labeling of type (1, 1, 1). 
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