

1126

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 2013

ISSN 2286-4822, www.euacademic.org
IMPACT FACTOR: 0.485 (GIF)

A Novel Algorithmic approach for solving Sudoku

puzzle in Guessed Free Manner

ARNAB K. MAJI
Department of IT, North Eastern Hill University

 Shillong, Meghalaya

India

SUDIPTA ROY
Department of IT, Assam University

 Silchar, Assam

 India

RAJAT K. PAL
Department of CSE, University of Calcutta

Kolkata, West Bengal

India

Abstract:

 "Sudoku" is the Japanese abbreviation of a longer phrase,

"Suuji wa dokushin ni kagiru", meaning "the digits must remain

single". It is a challenging numeric puzzle that trains our logical mind.

Solving a Sudoku puzzle requires no math, not even arithmetic. Even

so, the game poses a number of intriguing mathematical problems. The

problem of solving a given Sudoku puzzle finds numerous applications

in practice. All the existing Sudoku solving techniques are primarily

guess based heuristic or computation intensive soft computing

methodology. In case of solving 9x9 Sudoku Puzzle, in each of these

algorithms, we have to separately go through 81 cells and perform

backtracking for the individual cells. In this paper, an attempt has

been made to develop an algorithm which is minigrid based, i.e., we

have to individually go through nine minigrids (instead of 81 cells)

and perform backtracking only on them, which is less time consuming.

Moreover, no guessing is involved in the whole computation.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1127

Key words: Sudoku, Cell, Grid, Difficulty Level, Algorithm,

Backtracking, Permutation, Elimination.

1. Introduction:

A Sudoku is usually a 9×9 grid based puzzle problem

which is subdivided into nine 3×3 minigrids, wherein some

clues are given and the objective is to fill it up for the remaining

blank positions. Furthermore, the objective of this problem is to

compute a solution where the numbers 1 through 9 will occur

exactly once in each row, exactly once in each column, and

exactly once in each minigrid independently obeying the given

clues. One such problem instance is shown in Figure 1(a) and

its solution is shown in Figure 1(b).

Figure 1: (a) An instance of the Sudoku problem. (b) A solution of the

Sudoku instance shown in 1(a).

Besides the standard 9×9 grid, variants of Sudoku

puzzles include the following:

• 4×4 grid with 2×2 minigrids,

• 5×5 grid with pentomino regions published under the name

Logi-5. A pentomino is composed of five congruent squares,

connected orthogonally. Pentomino is seen in playing the game

Tetris,

• 6×6 grid with 2×3 regions,

 6

2 5

 7

 9 8

 1

 5

 5

1

9

 2

5 4

 6

 2

 4 7

9

 4

2 9

6 3

8 5

2 5 1

4 8 6

3 7 9

4 9 8

7 1 3

6 2 5

3 7 6

2 5 9

8 1 4

6 2 3

9 1 7

8 4 5

7 9 5

4 8 2

1 6 3

1 8 4

5 3 6

2 7 9

8 5 2

3 4 7

9 6 1

1 6 4

5 9 8

7 3 2

9 3 7

6 2 1

5 4 8

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1128

• 7×7 grid with six heptomino regions and a disjoint region,

• 16×16 grid (super Sudoku),

• 25×25 grid (Sudoku, the Giant),

A complete Sudoku solution grid may be arrived at in

more than one way, as we can start from any given clues that

are distributed over the minigrids of a given incomplete grid.

Nobody has yet succeeded in determining how many different

starting grids there are. Moreover, a Sudoku starting grid is

really only interesting to a mathematician if it is minimal, i.e.,

if removing a single number means that the solution is no

longer unique. No one has figured out the number of possible

minimal grids, which amounts to the ultimate count of distinct

Sudoku puzzles. It is a challenge that is sure to be taken up in

the near future.

The Sudoku problem is important as it finds numerous

applications in a variety of research domains with some sort of

resemblance. Applications of solving a Sudoku instance are

found in the fields of Steganography (Hong et al. 2008), Secret

image sharing with necessary reversibility (Chang et al. 2010),

Digital watermarking (Naini et al. 2010), Image authentication

(Wu and Ren 2009), Image Encryption (Wu et al. 2011),

Enhancement of genome sequence in DNA Sudoku (Enrich et

al. 2009), Track maintenance through cooperating agents

(Thaens, 2008) and so and so forth.

By the way, all the earlier existing Sudoku solvers that

are available in literature (and Internet) are entirely guess

based and hence extremely time consuming (Jussien 2007). In

addition, each of these existing solvers solves an instance of the

problem considering the clues one-by-one for each of the blank

locations. Often guessing may not be guided by selecting a

desired path of computing a solution and hence exhaustive

redundant computations are involved over there. On the other

hand, the solver developed in this paper is a minigrid based

guessed free Sudoku solver which is a more deterministic

algorithmic approach in the sense that redundancy is

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1129

drastically reduced in this process of computations involved and

that it always guarantees a solution if it exists in a reasonable

amount of time.

2. Literature Review:

An n2×n2 Sudoku grid (consisting of n×n blocks) is an

NP-complete problem (Yato and Seta 2003). So, it is unlikely to

develop a polynomial time algorithm to solve this problem.

There are quite a few logic techniques people use to solve this

problem. Some are basic simple logic, some are more advanced.

Depending on the difficulty of the puzzle, a mixture of

techniques may be needed in order to solve a puzzle.

Usually Sudoku instances are available in literature

based on their classification of different levels of difficulty like

easy, moderate, diabolical, etc. These classifications are based

on the algorithmic approaches developed and executed in

solving different Sudoku instances. Sometimes it is told that

the instances are easier or harder based on the number of clues

given along with their relative locations in a given instance but

there is no proof to support such claims. Incidentally, the

Sudoku solver developed herein does not differentiate the

instances in terms of any level of difficulty, and each of the

instances is equally easy or hard to solve using our approach, if

a reasonable number of clues are given. Table 1 shows a

comparison chart of the number of clues for different difficulty

levels (Lee 2006).

However, position of each of the empty cells also affects

the level of difficulty. If two puzzles have the same number of

clues at the beginning of a Sudoku game, the puzzle with the

givens (or clues) in clusters is graded in higher level than that

with the givens scattered over the space. Based on the row and

column constraints, the lower bound on the number of clues are

regulated in each row and column for each difficulty level (Lee

2006). as shown in Table 2.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1130

Table 1: Number of clues given in a Sudoku puzzle in defining the

level of difficulty of a Sudoku instance.

Difficulty level Number of clues

1 (Extremely Easy) More than 46

2 (Easy) 36-46

3 (Medium) 32-35

4 (Difficult) 28-31

5 (Evil) 17-27

Table 2: The lower bound on the number of clues given in each row

and column of a Sudoku instance for each corresponding level of

difficulty.

Difficulty level Lower bound on the number of

clues in each row and column

1 (Extremely Easy) 05

2 (Easy) 04

3 (Medium) 03

4 (Difficult) 02

5 (Evil) 00

It has already been told that our approach developed in

this paper does not differentiate the instances, rather our

approach computes a solution if it exists without guessing a

possible value in a blank location and minigrid based

irredundant deterministic computations are involved over

there.

The basic technique that has been adopted for solving

Sudoku puzzles is backtracking (Jussien 2007). It works as

follows. The program places number 1 in the first empty cell. If

the choice is compatible with the existing clues, it continues to

the second empty cell, where it places a 1 (in some other row,

column, and minigrid). When it encounters a conflict (which can

happen very quickly), it erases the 1 just placed and inserts 2

or, if that is invalid, 3 or the next legal number. After placing

the first legal number possible, it moves to the next cell and

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1131

starts again with a 1. If the number that has to be changed is a

9 (which cannot be raised by one in a standard Sudoku grid),

the program backtracks and increases the number in the

previous cell (the next-to-last number placed) by one. Then it

moves forward until it hits a conflict.

In this way, the program may sometimes backtrack

several times before advancing. It is guaranteed to find a

solution if there is one, simply because it eventually tries every

possible number in every possible location.

Figure 3. (a) An instance of a Sudoku puzzle. (b) Potential values in

each blank cell are inserted based on the given clues of the Sudoku

instance in Figure 3(a); here green digits are naked singles. (c) The

concept of naked singles is preferably used to reduce the domain of

probable candidate values in each blank cell, and the process is

successive in nature to find out consequent naked singles, as much as

possible. As for example, the naked single for cell [9,8] is 2, as 4 and 8

have already been recognized as naked singles along row 9 and

column 8; then 8 is a naked single for cell [7,8], as 2 and 4 are already

identified naked singles along column 8, and so on.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1132

(c)

(a)

 2

4 5 7

6 8

 2

 5

 3

7

5 4

 6 1

 9

 7

8

 5 6

7 6 5

9

5 1

8 2

 7

 6

(b)

1

2

 4

5

7

 6

8

 2

5

8

7

 5 3 4

6 1

9 3

7 8

8

5 6

7 6 5

9

5

1

8 9 2

 4 7

6

1 3 4

5 7 9

1 3

9

1 3

6

8 9

1 8 6 8

 9

1 3 4

7 9

1 9

1 9

 2 3

 4 9

1 4

 1 4

9

 3

5

1 7

1 6

8 9
1 2

 4 6

2 8

2 8

9

3 4

2 3

4

5 9

 6

8 9

1 3 4

7 9

1 3 4

5 7 9

2 4

7 8

1 4

6 8

9

8 9

 2 3

 4 9

 3 4

 8 9

3 6

 1 7 1 7

3 4

5

8 9

 2 3

 4 9

1 2

8 9

1 2

4 8

1 2

3

4 7

9

1 3

4

7 9

5 6

8

1 2

3 4

1 3

4 8

1 2 3

4 7 9

2 4

8 1 2 1 4

2 4

8

1 2

8

1 2

3 4

1 2

4 1 3

4 8

1 3 4

5 7 9

1 3

9

1 3

2

4 5 7

1 3

6

8 9

1 8

8

6 8

8 9

6 8
1 3 4

7 9

1 9

1 9

2

 2 3

 4 9

1 4

5 1 4

9 1 7

8

1 6

8 9 1 2

 4 6

7

2 8

8

5 3 4

2 8

8 9

6 1

9 3

7

8

5 6

7 6 5

9

5 1

8

9 2

3 4 7

6

2 3

4

5 9

1 3 4

7 9

1 3 4

5 7 9

2 4 7

8 9

1 4 6

8 9

8 9

9

 2 3

 4 9

3 4

 8 9
 1 7

 7 9

 1 7

 7 9 3 4

5

8 9

 2 3

 4 9

4 9

1 2

8 9

8 9

1 2

4 8

4 8

1 2

3

4 7

9

1 3

4

7 9

5 6

6 8

1 2

3 4

1 3

4 8

1 2 3

4 7 9

2 4

8
1 2

3

1 4

4 2 4

8

3 8

1 2

3 8

1 2

3 4

1 2

3 4 1 3

4 8

3 6

7

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1133

Some other techniques include elimination based

approach (Lee 2006) and soft computing based approach

(Jussien 2007). Let us now focus to review the elimination

based approach. In this approach, based on the given clues a

list of possible values for every blank cell is first obtained. Then

using the following different methods such as naked single,

hidden single, lone ranger, locked candidate, twin, triplet, quad,

X-wing, XY-wing, swordfish, coloring, we eliminate the multiple

possibilities of each and every blank cell, satisfying the

constraints that each row, column, and minigrid should have

the numbers 1 through 9 exactly once. An instance of a Sudoku

puzzle and its possible values of each blank cell are shown in

Figures 3(a) and 3(b), respectively.

B. Naked single

If there is only one possible value existing in a blank

cell, then that value is known as a naked single (Lee 2006).

After assigning the probable values for each blank cell, as

shown in Figure 3(b), we obtain the naked singles 3, 9, and 3 at

locations [5,2], [5,8], and [8,3], respectively. So, we can directly

assign these values to these cells. Then we eliminate these

digits (or naked singles) from each of the corresponding row,

column, and minigrid. Hence, after elimination of these

numbers, as stated above, we obtain a modified (reduced) status

of each blank cell as shown in Figure 3(c), wherein several

other naked singles could be found (and this process is

recursive until no naked singles are found).

C. Hidden single

Sometimes there are blank cells that do, in fact, have

only one possible value based on the situation, but a simple

elimination of candidate in that cell‟s row, column and minigrid

does not make it obvious. This kind of possible value is known

as a hidden single (Lee 2006). Suppose, if we re-examine the

possible values in each cell of Figure 3(b), hidden single can

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1134

easily be found in cell [7,2] whose value must be 4 as in

minigrid numbered 7, 4 is not there as probable values in other

cells. Similarly, for cell [4,9], the hidden single is 6 (as in other

cells of the same minigrid 6 is not present as probable values).

Most of the puzzles ranked as easy, extremely easy and

medium can simply be solved using these two techniques of

singles.

D. Lone ranger

Lone ranger is a term that is used to refer to a number

that is one of multiple possible values for a blank cell that

appears only once in a row, or column, or minigrid (Lee 2006).

To see what this means in practice, consider a row of a Sudoku

puzzle with all its possibilities for each of the cells (red digits

are either givens or already achieved), as shown in Figure 4. In

this row, six cells (with red digits) have already been filled in,

leaving three unsolved cells (second, eighth, and ninth) with

their probable values written in them.

Figure 4. An example row of a Sudoku puzzle with a lone ranger 3 in

the second cell.

Notice that the second cell is the only cell that contains

the possible value 3. Since none of the remaining cells in this

row can possibly contains 3, this cell can now be confirmed with

the number 3. In this case, this 3 is known as a lone ranger.

E. Locked candidate

Sometimes it can be observed that a minigrid where the

only possible position for a number is in one row (or column)

within that block, although the position is not fixed for the

number. That number is known as a locked candidate (Lee

2006). Since the minigrid must contain the number in a row (or

5 1 9 8 6 7 6 7 2
3 6

7 4

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1135

column) we can eliminate that number not as a probable

candidate along the same row (or column) in other minigrids.

Consider the Sudoku puzzle along with its probable

assignments for each blank cell, as shown in Figure 5. It can

readily be found that minigrid numbered 6 should have 3 in the

last row. So we can simply eliminate number 3 from cell [6,5] of

minigrid numbered 5. Similarly, minigrid numbered 8 should

have 3 in its first column. So, 3 can be eliminated as a possible

candidate from cell [4,4].

Figure 5. A Sudoku puzzle with probable locked candidates in the

last row of minigrid 6 (and here the locked candidates are 3 and 5 in

cells [6,7] and [6,8]), in the first column of minigrid 8 (and here the

locked candidates are 9 and 3 in cells [8,4] and [9,4]), and so on.

F. Twin

If two same possible values are present for two blank

cells in a row (or column) of a Sudoku puzzle, they are referred

to as twin (Lee 2006). Consider the partially solved Sudoku

puzzle as shown in Figure 6(a). Observe the two cells [2,5] and

[2,6]. They both contain the values 2 and 3 (means either 2 or

7 9 3

8 2 5

1 4 6

4 5 1 6

7 4 9 3

8 5 9 2

2 4 5 8

4 6

9 1

3 5

9
5 3 9

3 4

5
3 6 9

4 5 1 8

2 3 6 7

1 4

5 6

4 5

6

7

4 5 3 2

1 4 5

6 9 8
4 6

9

2 8 1 4

9 6 7

3 4

5
3 4

 5

1 4

3

4

7 9

1 3 4 8

6 2 5

6 8 1

3 9 5 2

7 4

3 4 2 5

7
4 6

9

3 4

6 9

8 1 3 9 3 9

4 6

9

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1136

3). So, if cell [2,5] takes value 2, then cell [2,6] must contain 3,

or vice versa. This type of situation is an example of twin.

Once a twin is identified, these values can be eliminated

by striking through from the same row, column, and minigrid

as shown in Figure 6(b), as the values cannot be probable

candidates in other blank cells along the same row (or column)

and in the same minigrid.

(b)

Figure 6. (a) A partial Sudoku instance with presence of twin 2 and 3

in cells [2,5] and [2,6]. (b) Elimination of probable values (that are 2

and 3) based on the twin from the second row (2 is deleted from cells

[2,1] and [2,3]) and from the same minigrid (2 and 3 are deleted from

cells [1,4] and [1,5]).

(a)

2 3

8 9

7
2 3 2 3

6 4 5

6 9

2 8 7

2 4

5

2 4

5

9 3 1

5 2 3 7 1 2 4 7 8 9
2 3

4

2 3

8 9
1 3 4

5

3 4

5

3 4

5
5 4 7

8
6

8 1

4 7

8

8

4

2 3

8 9

7 2 3 2 3

6 5

1 6 9

2 8 7

2 4

5

2 4

5

9 3 1

5 2 3 7 1 2 4 7 8 9
2 3

4

2 3

8 9 1 3 4

 5

3 4

5

3 4

5
5 6

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1137

(c)

Figure 7. Example rows of Sudoku puzzles with different varieties of

triplet. (a) A triplet of Variety# 1 with same three possible values

present in three cells. (b) A triplet of Variety# 2 with same three

possible values present in two cells and the other cell containing any

two of them. (c) A triplet of Variety# 3 with three possible values

present in one cell and the two other cells containing two different

subsets of two possible values of the earlier three values.

G. Triplet

If three cells in a row (or column) are marked with a set

of same three possible values, they are referred to as triplet

(Lee 2006). Like twins, triplets are also useful for eliminating

some other possible values for other blank cells. Triplet has

several variations like the following.

Variety# 1: Three cells with same three possible values,

as shown in Figure 7(a).

Variety# 2: Two cells with same three possible values

and the other cell containing any two of the possible

values, as shown in Figure 7(b).

Variety# 3: One cell with three possible values and the

two other cells containing two different subsets of two

possible values of the former three values, as shown in

Figure 7(c).

(a)

(b)

8

2

3

4 6 4 5

6 7

4 5 9

1

8

2

3

4 5

6
4 5 7

4 5

6 9

1

8 2 3
4 5

6
4 5

6 7

4 5

6 9 1

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1138

Once a triplet is found, we can eliminate all the values of

the triplet that are there as possible candidates in other blank

cells along the same row (or column) and in the same minigrid.

H. Quad

Analogous to triplet, a quad consists of a set of four

possible values and these values are present in some form in

four blank cells in a row (or column) of the Sudoku instance

(Lee 2006). That is, if the values only exist in four (blank) cells

in a row (or column), while each cell contains at least two of the

four values, then other values (or numbers except the specified

four values) can be eliminated from each of the assumed cells

(forming the quad). Figure 8 shows a row of a Sudoku puzzle

where the quad comprising the digits 1, 2, 4, 7 formed by the

cells in column four, six, seven, and eight. So other possible

values can straightway be eliminated from these cells, as shown

by striking through the inapplicable digits in the figure.

Figure 8. An example row of a Sudoku puzzle with quad comprising

digits 1, 2, 4, and 7 present in columns four, six, seven, and eight. To

support the digits present in the quad in the stated cells, other

probable values (like 8 and 9 in columns six, seven, and eight) are

eliminated from these cells of the quad, as these values (that are 8

and 9) cannot be probable digits for the specified cells.

An extended version of the above algorithm(Jussien

2007) defines a set of terms like XWing, Swordfish, Hidden

subset, etc, but ultimately it is also a trial based algorithmic

way-out which is a guess based, cell based Sudoku solver

(Jussien 2007). The XWing technique can be applied when there

are two rows or columns for which a given value is possible to

assign only to two blank cells. If those four cells are in only two

orthogonal rows or columns, then all other cells in those regions

1 2

4 7
1 2

4 8
1 4

7 8

1 2

7 8

9
6 3 5 8

9
1 8

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1139

will never get assigned to this value. The XWing technique can

easily be generalized but swordfish is a technique that further

makes the possibility of assigning a digit to a blank cell more

specific. On the other hand, hidden subset is a kind of technique

that is very similar to twin or triplet or quad that have already

been explained above.

On the other hand, all the soft computing based Sudoku

solvers either use Genetic algorithm (Mantere and Koljonen

2007) or Bee colony (Pacurib et al. 2009), which is exhaustive

and extremely time-consuming. Needless to mention that these

techniques use their own set of operators to execute the

respective algorithms. Genetic algorithms belong to the larger

class of evolutionary algorithms that generate solutions to

optimization problems using techniques inspired by natural

evolution, such as selection, crossover, mutation, and

inheritance.

The Simulated annealing based Sudoku solver is a

probabilistic Sudoku solver. The general design is capable of

solving a Sudoku instance of order up to fifteen [7]. It has been

claimed that the solver has solved in actual hardware Sudoku

puzzles of up to order 12 within the competition-imposed time

limits.

3. Proposed Algorithm for solving Sudoku puzzle in a

guessed free manner:

All the previous algorithms discussed in the literature

survey are cell based and some amount of guessing is always

involved in all the technique. In this paper an attempt has been

made to develop an algorithm which is minigrid based, i.e., we

have to individually go through nine minigrids (instead of 81

cells) and perform backtracking only on them, which is less

time consuming. Moreover, no guessing is involved and no

redundant computation is performed during the whole

computation.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1140

Our proposed algorithm considers each of the minigrids

that may be numbered as 1 through 9 as shown in Figure 9.

Each minigrid may or may not have some clues as numbers

that are given. We first consider a minigrid that contains a

maximum number of clues, and if there are two or more such

minigrids, we consider the one with the least minigrid number.

Needless to mention that each of the cells in a minigrid,

either containing a clue or a blank cell, is somehow

differentiated from each of the cells of another minigrid as the

position of a cell in a Sudoku instance could be specified by its

row number and column number, which is unique. So, a cell [i,

j] of minigrid k may either contain a number l as a given clue or

a blank location that is to be filled in by inserting a number m,

where 1 ≤ i, j, k, l, m ≤ 9.

Figure 9: The structure of a 99 Sudoku puzzle (problem) with its

nine minigrids of size 33 each as numbered 1 through 9. Minigrid

number 1 consists of the cell locations [1, 1], [1, 2], [1, 3], [2, 1], [2, 2],

[2, 3], [3, 1], [3, 2], and [3, 3], minigrid number 2 consists of the cell

locations [1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], and [3, 6],

and so on.

Now to start with a minigrid as stated above, we find

that the minigrid 3 contains a maximum number of clues, i.e.,

4, among all the minigrids, and each of the minigrids 1 and 2

contains less number of clues than that of minigrid 3 (see

Figure 1(a)). For example, for the Sudoku instance as shown in

Figure 1(a), each of the minigrids 3, 5, and 7 contains four clues

4 5 6

7

3 2 1

8 9

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1141

each; hence, at the beginning, we consider minigrid 3 for

computing all its valid permutations of the missing numbers for

its blank locations (as 3 is the minimum minigrid number).

Besides, for a given Sudoku instance, we know all the

clues given as well as the clue positions among the cells of a

minigrid and subsequently the blank cells are also known to us.

For example, the given clues in minigrid 3 of Figure 1(a) are 9

at location [1, 8], 8 at location [1, 9], 1 at location [2, 8], and 5 at

location [3, 9]. Here we denote a cell location of a Sudoku

instance by [row number, column number], where each of row

number and column number varies from 1 to 9. Hence the

blank locations are [1, 7], [2, 7], [2, 9], [3, 7], and [3, 8], and the

missing digits are 2, 3, 4, 6, and 7.

In this algorithm, we compute all possible permutations

of these missing digits in minigrid 3, where the first

permutation may be 23467 (the minimum number) and the last

permutation may be 76432 (the maximum number using the

missing digits). Here as the number of blank locations is five,

the total number of permutations is 5!, which is equal to 120.

Now the algorithm considers each of these permutations one

after another and identifies only the valid set of permutations

based on the given clues available in rows and columns in other

minigrids (that are minigrids 1, 2, 6, and 9). As for example, if

we consider the first permutation 23467 and place the missing

digits, respectively, in order in locations [1, 7], [2, 7], [2, 9], [3,

7], and [3, 8], which are arranged in ascending order, we find

that this permutation is not a valid permutation. This is

because the location [6, 7] already contains 2 as a clue of

minigrid 6, and we cannot place 2 at [1, 7] as the permutation

suggests. Also the location [3, 5] contains 7 as a clue of minigrid

2, and we cannot place 7 at [3, 8] as it is supposed to place.

Similarly, we may find that the last permutation 76432

is also not a valid permutation as location [4, 9] already

contains 4 as a clue of minigrid 6, and we cannot place 4 at [2,

9] as the permutation suggests. But we may observe that 74362

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1142

is a valid permutation as we may safely place 7 at [1, 7], 4 at [2,

7], 3 at [2, 9], 6 at [3, 7], and 2 at [3, 8] based on the other clues

in the corresponding rows and columns of other minigrids (that

are minigrids 1, 2, 6, and 9).

This is how we may compute all valid permutations of

minigrid 3, and proceed for a next minigrid that belongs to

among the row and column minigrids of minigrid 3 which

contains a maximum number of clues but the minigrid number

is minimum. Among all the valid permutations (for their

respective blank locations) of minigrid 3, at least one

permutation must last at the end of computation of valid

permutations of each of the remaining minigrids if the solution

of the given Sudoku instance is unique. To find out the next

minigrid to be considered, we go through the row and column

minigrids of minigrid 3 in the Sudoku instance of Figure 1(a)

(that are minigrids 1, 2, 6, and 9), and among these minigrids

we find that the minigrid 1 contains a maximum number of

clues, i.e., 3 (which is equally true for each of the minigrids 6

and 9), and its minigrid number is the minimum.

So, now we consider minigrid 1, and as done before for

minigrid 3, we find the given clues and the missing digits

therein along with their locations. Here we do exactly the same

as we did earlier in computing all permutations of the missing

digits in minigrid 3. At the time of identifying all valid

permutations of minigrid 1, we consider one valid permutation

(at their respective blank locations) of minigrid 3 in addition to

all given clues of the instance under consideration. If we get at

least one valid permutation for minigrid 1 (obeying an assumed

valid permutation of minigrid 3), we consider it for some

subsequent computation of permutations of another minigrid;

otherwise, we consider a second valid permutation of minigrid

3, and based on that we compute another set of valid

permutations for minigrid 1, and so on.

Now it is straightforward to declare that here the

minigrid that is to be considered is one among the minigrids 2,

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1143

4, 6, 7, and 9 as the row and column minigrids of minigrids 3

and 1 (for which we have already computed valid

permutation(s) one after another); note that neither of

minigrids 5 and 8 is a row or column minigrid of minigrids 3

and 1. Hence following the instance in Figure 1(a), we consider

minigrid 7 for computing all its valid permutations allowing for

one valid permutation of minigrid 3 and then one subsequent

valid permutation of minigrid 1, in addition to all given clues of

the instance under consideration, as each of the minigrids 2, 4,

6, and 9 contains less number of clues than that of minigrid 7.

Here in computing all valid permutations of minigrid 7, we may

not consider an assumed valid permutation of minigrid 3, as

this minigrid is neither in a row nor in a column of minigrid 7,

but we have to consider a valid permutation of minigrid 1 and

all given clues in the Sudoku instance (primarily the clues

given in minigrids 4, 8, and 9).

This process is continued till a valid permutation of a

minigrid (or a set of valid permutations of a group of minigrids)

is propagated to compute a valid permutation of a subsequent

minigrid, and eventually a valid permutation of the last

minigrid (i.e., the ninth minigrid; not necessarily minigrid

number 9) is computed, which altogether generate a desired

solution of the given Sudoku instance. It may so happen that up

to t minigrids t valid permutations that we consider in a series

match each other towards a valid combination of the given

Sudoku instance but there is no valid permutation for the

(t+1)th minigrid obeying the earlier assumed t valid

permutations, where 1  t  9.Then we consider a second valid

permutation of the tth minigrid, and after that we try to

compute a valid permutation for the (t+1)th minigrid, if one

exists. If for none of the valid permutations of the tth minigrid a

valid permutation for the (t+1)th minigrid is obtained, we

consider a second valid permutation for the (t−1)th minigrid that

leads to compute a new set of valid permutations for the tth

minigrid, and so on.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1144

We claim that we must acquire at least one valid permutation

for each of the minigrids one after another, obeying at least one

valid permutation computed for each of the minigrids

considered earlier in the process of assuming the minigrids in

succession; we claim this result in the form of the following

theorem if at least one solution of the given Sudoku puzzle

exists.

Theorem 1: There is at least one valid permutation for

the missing digits for their respective blank locations in each of

the minigrids such that the combination of all such (nine) valid

permutations for all the (nine) minigrids produces a desired

solution, if there exists a solution of a given Sudoku instance.

Proof: The proof of the theorem is straightforward

following the steps of the inherent development of the

algorithm as stated above, if a feasible solution of the given

Sudoku instance is there. We may start with one valid

permutation for some earlier assumed minigrid that may not be

a valid partial solution in combination for the whole Sudoku

instance; then we must reach to a point of computing a valid

permutation of some subsequent minigrid when no such

permutation is obtained for that minigrid. In that case we are

supposed to return back to the former minigrid we had to

consider a next valid permutation, if any, for the same (i.e., for

the previous minigrid) and move to the current minigrid for

computing its valid permutations accordingly. Hence it is clear

that if one valid permutation for some earlier assumed minigrid

is not a valid partial solution in combination for the whole

Sudoku instance, then we must have to return back to that

prior minigrid to consider a new valid permutation of the same

to continue the process again in computing all valid

permutations of its subsequent minigrid, and so on. In this way,

a set of individual valid permutations is to be differentiated so

that in combination of all of them a desired solution of the given

Sudoku instance is computed, if one such solution exists.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1145

To see the algorithm at a glance, let us write it in the form as

follows:

Algorithm: A Guessed Free Sudoku Solver – Version 1

Input: A Sudoku instance, P of size 9×9.

Output: A solution, S of the given Sudoku instance, P.

Step 1: Compute the number of clues, digit(s) given as clue,

and the missing digits in each of the minigrids of P.

Step 2: Compute SM, a sequence of minigrids that contains all

the minigrids in succession, wherein M SM is the minigrid

(and the first member in SM) with a maximum number of clues

and whose minigrid number is minimum. In SM, a member N is

a minigrid which is either in the row or in the column of any of

its earlier members in SM including M that contains a

maximum number of clues and whose minigrid number is

minimum, where 1  N ≤ 9.

Step 3: Compute all valid permutations for the missing digits

in M, and store them.

Step 4: For all the remaining minigrids in succession in SM do

the following:

Step 4.1: Consider a next minigrid, N SM, and compute all its

valid permutations for the missing digits in N assuming a valid

permutation for each of the earlier minigrids up to M, and store

them.

Step 4.2: If one valid permutation for N is obtained, then

consider a next minigrid of N in SM, if any, and compute all its

valid permutations for the missing digits in this minigrid

assuming a valid permutation for each of the earlier minigrids

up to M, and store them.

 Else consider a next valid permutation, if any, of the

immediately previous minigrid of N, and compute all its valid

permutations for the missing digits in N assuming a valid

permutation for each of the earlier minigrids up to M, and store

them.

Step 5: If all the valid permutations of the immediate successor

minigrid of M are exhausted to obtain a valid combination for

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1146

all the nine minigrids in SM, then consider a next valid

permutation of M and go to Step 4. The process is continued

until a valid combination for all the nine minigrids in SM is

obtained as a desired solution S for P; otherwise, the algorithm

declares that there is no valid solution for the given instance P.

Now it is straightforward to compute SM for a given Sudoku

instance P. As for example, consider the Sudoku instance given

in Figure 1(a). According to this instance the sequence SM of

minigrids is 3, 1, 7, 6, 5, 9, 4, 8, 2 as it has been described and

performed in Step 2 of the first version of the algorithm above.

Computation of all valid permutations for the missing

digits in a minigrid is an important task of the present

algorithm. At the time of computing only all valid permutations

for the missing digits, we follow a tree data structure, where

the degree of the root of the tree is same as the number of

missing digits, and level-wise it reduces to one to obtain the leaf

vertices, where each leaf at the lowest level is a valid

permutation of all the missing digits based on the clues given in

P (and the assumed valid permutation(s) in other minigrid(s) in

subsequent iterations).

As for example, the number of clues given in minigrid 3

of Figure 1(a) is 4, and the missing digits are 2, 3, 4, 6, and 7.

The proposed algorithm likes to place each of the permutations

of these missing digits in the blank locations [1, 7], [2, 7], [2, 9],

[3, 7], and [3, 8]. Here the tree structure we like to compute is

shown in Figure 10, whose root does not contain any

permutation of the missing five digits, and it is represented by

„‟. This root is having five children where the first child

leads to generate all valid permutations staring with 2, the

second child leads to generate all valid permutations staring

with 3, and so on.

Now note that none of the permutations starting with 2

is a valid permutation as column 7 of minigrid 6 contains 2 as

given clue (at location [6, 7]). So, we do not expand this vertex

(i.e., vertex with permutation „2‟) further in order to

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1147

compute only the set of desired valid permutations. Similarly,

we do not expand the child vertex with permutation „6‟, as

location [1, 3] contains 6 as given clue. Up to this point in time,

as either 3, or 4, or 7 could be placed at [1, 7], we expand each

of the child vertices starting with permutations 3, and 4, and 7,

as shown in Figure 10.

Similarly, we expand the tree structure inserting a new

missing number at its respective location (for a blank cell)

leading from a valid permutation (as vertex) in the previous

level of the tree. Correspondingly, we verify whether the

missing digit could be placed at the respective location for a

blank cell of the given Sudoku instance P. If the answer is „yes‟,

we further expand the vertex; otherwise, we stop expanding the

vertex in some earlier level of the tree structure prior to the last

level of leaf vertices only. As for example, the vertex with

permutation „742‟ is not expandable, because we cannot place

2 at [2, 9] as [2, 1] contains a 2 as given clue. So, this is how

either a valid permutation is generated from the root of the tree

structure reaching to a bottommost leaf vertex, or the process of

expansion is terminated in some earlier level of the tree that

must generate other than valid (unwanted) permutations at

this point in time.

Interestingly, Figure 10 shows the reality that the

number of possible permutations of five missing digits is 120,

and out of them only seven are valid for minigrid 3 of the

Sudoku instance shown in Figure 1(a). Note that the given

clues in P are nothing but constraints and we are supposed to

obey each of them. So, usually, if there are more clues, P is

more constrained and hence the number of valid permutations

is even much less, and the solution, if it exists, is unique in

most of the cases. On the contrary, if there are fewer clues in P,

more valid permutations for some minigrid of P could be

generated, computation of a solution for P might take more

time, and P may have two or more valid solutions. In any case,

if there is a unique solution of the assumed Sudoku instance (in

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1148

Figure 1(a)), out of these seven valid permutations only one will

finally be accepted following the subsequent steps of the

algorithm.

Now the algorithm considers one valid permutation (out

of the seven permutations) of minigrid 3 and all given clues in

P, and generates all valid permutations for minigrid 1. If at

least one valid permutation for minigrid 1 is obtained, we

proceed for generating all valid permutations for minigrid 7

obeying all given clues in P and the assumed valid

permutations of minigrids 3 and 1; otherwise, a second valid

permutation of minigrid 3 is considered, for which in a similar

way, we generate all valid permutations for minigrid 1, and so

on.

This is how the algorithm proceeds and generates all

valid permutations of a minigrid under consideration obeying

the given clues in P and a set of assumed valid permutations,

one for each of the minigrids considered earlier in succession,

up to this point in time.

Figure 10: The permutation tree for generating only valid

permutations of the missing digits in minigrid 3 of the Sudoku

instance shown in Figure 1(a).

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1149

Note that at the time of computing a set of valid

permutations for a minigrid, we have to consider clues and

(earlier computed) valid permutations in only four of the

remaining eight minigrids that are adjacent to the minigrid

(currently) under consideration. As for example, while

computing valid permutations for minigrid 7, we have to

consider one valid permutation of minigrid 1 and the clues

given in minigrids 1, 4, 8, and 9 only; here the assumed valid

permutation of minigrid 3 has no use while computing valid

permutations for minigrid 7. In the same way, while computing

valid permutations for minigrid 6, only we have to consider the

assumed valid permutation of minigrid 3 (up to this point in

time) and the clues given in minigrids 3, 4, 5, and 9 only; here

the assumed valid permutations of minigrids 1 and 7 have no

use while computing valid permutations for minigrid 6, and so

on.

Now we discuss about the size of the tree structure

under consideration. If p be the number of blank cells in a

minigrid and the Sudoku instance is of size nn, then the

computational time as well as the computational space

complexities of the guessed free Sudoku solver developed herein

is (p!x)n = O(pn), where x is the number of other than valid

permutations based on the clues given in the Sudoku instance

P. Our observation is that for a given Sudoku instance P, x is

very close to p!, and hence p!x is a reasonably small number

and in our case the value of n is equal to 9. Hence, the

experimentations made by this algorithm take negligible

amount of clock time, of the order of milliseconds. We conclude

that the algorithm developed in this paper guarantees a valid

solution of a given Sudoku puzzle, if one exists, and

theoretically it takes time and space exponential in size; these

has been stated in the following theorem and proved thereafter.

Theorem 2: The guessed free Sudoku solver developed

in this paper guarantees a valid solution of a Sudoku instance,

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1150

if one exists, and it takes time and space complexities O(pn),

where p is the number of blank cells in a minigrid of a Sudoku

instance of size nn.

Proof: The guessed free Sudoku solver developed in this paper

considers the minigrids of a given Sudoku instance P in a

particular sequence in a deterministic way. Hence, if there be a

solution S for P, then each minigrid must have its own valid

permutation for its missing digits and in combination of all of

them an overall valid solution S for P is obtained, if S is unique.

Incidentally, the guessed free Sudoku solver generates a set of

only valid permutations for a minigrid, and the required valid

permutation for the minigrid in S must be a member of this set.

If the algorithm starts from a valid permutation for a minigrid,

or considers a valid permutation for some subsequent minigrid,

which may not be a valid permutation towards computing S,

then the algorithm must reach to a point when no valid

permutation for a later minigrid will be generated, and we have

to revert back to the previous minigrid to consider its next valid

permutation.

In this process of computation, if S is unique for P, the

algorithm must consider the valid permutation of the initial

minigrid, which will be the final valid permutation for the

minigrid in S, then generation of permutations of the

subsequent minigrids and their consideration will eventually

lead to the desired solution S for P. This process might have

several backtrackings, but as the number of valid permutations

for a minigrid is negligibly less and the number of minigrids is

confined to nine only, S is guaranteed to be computed in a

reasonable amount of time, if it exists.

Now it is straightforward to prove that the algorithm

takes both computational time and space O(pn), as generation of

all valid permutations of a minigrid is the dominating

computations involved in this algorithm, where p is the number

of blank cells in a minigrid of P of size nn. Here pn is the size

of the tree structure we compute while generating all valid

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1151

permutations of the missing digits in a minigrid. In practice,

the size of the tree structure is significantly less than the

asymptotic upper bound mentioned herein.

4. Conclusion

In this paper we have proposed an exclusive minigrid

based Sudoku solver algorithm, which is completely guessed

free. The solver considers each of the minigrids (instead of

blank cells in isolation) of size 3×3 each that has been

developed for the first time in designing such an algorithm for a

given Sudoku puzzle of size 9×9. In our algorithm a pre-

processing is there for computing only all valid permutations

for each of the minigrids based on the clues in a given Sudoku

puzzle.

It has been observed in most practical situations that

the number of valid permutations is appreciably less than the

total number of possible permutations for each of the minigrids,

and even if there are less clues in some minigrid of an instance,

clues present in four adjacent row and column minigrids

severely help in reducing the ultimate number of valid

permutations for that minigrid too. Anyway, this approach of

minigrid-wise computation of valid permutations and checking

their compatibility among row minigrids and column minigrids

is absolutely new and done for the first time in this domain of

work.

As we consider minigrids for finding only the valid

solutions of a given Sudoku puzzle instead of considering the

individual (blank) cells, therefore, the computations involved in

the algorithm is significantly reduced. In the case of a 9×9

Sudoku puzzle, there are 81 such cells with some clues (which

is less) and the remaining blank cells (which is more), whereas

there are only nine such minigrids each of which consists of 3×3

cells. Here the observation to a Sudoku puzzle is not by

searching of missing numbers cell-by-cell (as if searching for an

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1152

address by moving through streets); rather, it is one step above

the ground of the puzzle by considering groups of cells or

minigrids (and searching the same from a bird‟s eye view).

The brilliancy of the algorithm developed in this paper is

that the same logic can also be straightway applied for larger

Sudoku instances such as 16×16, 25×25, or of any other

rectangular sizes (with their respective objective functions).

The level of difficulty is another important issue that

almost all the earlier Sudoku solvers consider while developing

an algorithm. There are no hard and fast rules that state the

difficulty level of a Sudoku puzzle. A sparsely filled Sudoku

puzzle may be extremely easy to solve, whereas a densely filled

Sudoku puzzle may actually be more difficult to crack. From a

programming viewpoint, we can determine the difficulty level of

a Sudoku puzzle by analyzing how much effort must be

expended to solve the puzzle, and the different levels of

difficulty are easy, medium, difficult, extremely difficult, etc.

Incidentally, the Sudoku solver developed in this paper does not

depict any level of difficulty; rather, all the Sudoku instances

are having the same level of difficulty. In some cases, more

valid permutations may be generated for some minigrid, but in

general, the number of valid permutations is much less, and the

minigrids with smaller number of valid permutations in fact

guide to compute eventually all the desired solutions for a given

Sudoku instance.

BIBLIOGRAPHY:

Chang, C.-C., P.-Y. Lin, Z. H. Wang, and M. C. Li. 2010.

“A Sudoku based Secret Image Sharing Scheme with

Reversibility.” Journal of Communications 5(1): 5-12.

Erlich, Y., K. Chang, A. Gordon, R. Ronen, O. Navon, M.

Rooks, and G. J. Hannon. 2009. “DNA Sudoku: Harnessing

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1153

High-throughput Sequencing for Multiplexed Specimen

Analysis.” Genome Research Journal 19(7): 1243-1253.

Hong, W., T.-S. Chen, and C.-W. Shiu. 2008.

“Steganography using Sudoku Revisited.” Proc. 2nd

International Symp. Intelligent Information Technology

Application: 935-939. Accessed June 2013, Available at

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4739900

&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j

sp%3Farnumber%3D4739900.

Jussien, N. 2007. A-Z of Sudoku. USA: ISTE Ltd.

Lee, W.-M. 2006. Programming Sudoku. USA: Apress.

Mantere, T. and J. Koljonen. 2007. “Solving, Rating and

Generating Sudoku Puzzles with GA.” IEEE Congress on

Evolutionary Computation: 1382-1389.

Naini, P. M., S. M. Fakhraie, and A. N. Avanaki. 2010.

“Sudoku Bit Arrangement for Combined Demosaicking and

Watermarking in Digital Camera.” Proc. 2nd International

Conf. Advances in Databases, Knowledge and Data

Applications: 41-44. Accessed June 2013, Available at

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arn

umber=5477147&contentType=Conference+Publications.

Pacurib, J. A., G. M. M. Seno, and J. P. T. Yusiong. 2009.

“Solving Sudoku Puzzles using Improved Artificial Bee Colony

Algorithm.” In: Proc. 4th Int. Conf. Innovative Computing,

Information and Control: 885-888. Accessed July 2013,

Available at

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5412260

&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5410746

%2F5412194%2F05412260.pdf%3Farnumber%3D5412260.

Thaens, R. 2008. ”Track Maintenance through

Cooperating Agents.” Proc. 11th International Conference on

Information Fusion: 1-8. Accessed July 2013, Available at

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4632285

&url=http%3A%2F%2Fieeexplore.ieee.org

%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4632285.

Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for

solving Sudoku puzzle in Guessed Free Manner

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013

1154

Wu, W.-C. and G.-R. Ren. 2009. “A New Approach to

Image Authentication using Chaotic Map and Sudoku Puzzle”,

Proc. 5th Int. Conf. Intelligent Information Hiding and

Multimedia Signal Processing: 628-631. Accessed May 2013,

Available at

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5337415&contentType=Conference+Publications&queryText%3

DA+New+Approach+to+Image+Authentication+Using+Chaotic

+Map+and+Sudoku+Puzzle.

Wu, Y., J. P. Noonan, and S. Agaian. 2011. “Image

Encryption using the Rectangular Sudoku Cipher.” Proc.

International Conference on System Science and Engineering:

704-709. Accessed July 2013, Available at

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arn

umber=5961994&contentType=Conference+Publications.

Yato, T. and T. Seta. 2003. “Complexity and

Completeness of Finding Another Solution and Its Application

to Puzzles.” IEICE Transactions on Fundamentals of

Electronics, Communications, and Computer Sciences E86-A(5):

1052–1060.

