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Abstract: 

 "Sudoku" is the Japanese abbreviation of a longer phrase, 

"Suuji wa dokushin ni kagiru", meaning "the digits must remain 

single". It is a challenging numeric puzzle that trains our logical mind. 

Solving a Sudoku puzzle requires no math, not even arithmetic. Even 

so, the game poses a number of intriguing mathematical problems. The 

problem of solving a given Sudoku puzzle finds numerous applications 

in practice. All the existing Sudoku solving techniques are primarily 

guess based heuristic or computation intensive soft computing 

methodology. In case of solving 9x9 Sudoku Puzzle, in each of these 

algorithms, we have to separately go through 81 cells and perform 

backtracking for the individual cells. In this paper, an attempt has 

been made to develop an algorithm which is minigrid based, i.e., we 

have to individually go through nine minigrids (instead of 81 cells) 

and perform backtracking only on them, which is less time consuming. 

Moreover, no guessing is involved in the whole computation. 
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1. Introduction: 

 

A Sudoku is usually a 9×9 grid based puzzle problem 

which is subdivided into nine 3×3 minigrids, wherein some 

clues are given and the objective is to fill it up for the remaining 

blank positions. Furthermore, the objective of this problem is to 

compute a solution where the numbers 1 through 9 will occur 

exactly once in each row, exactly once in each column, and 

exactly once in each minigrid independently obeying the given 

clues. One such problem instance is shown in Figure 1(a) and 

its solution is shown in Figure 1(b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) An instance of the Sudoku problem. (b) A solution of the 

Sudoku instance shown in 1(a). 

 

Besides the standard 9×9 grid, variants of Sudoku 

puzzles include the following: 

• 4×4 grid with 2×2 minigrids, 

• 5×5 grid with pentomino regions published under the name 

Logi-5. A pentomino is composed of five congruent squares, 

connected orthogonally. Pentomino is seen in playing the game 

Tetris, 

• 6×6 grid with 2×3 regions, 
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• 7×7 grid with six heptomino regions and a disjoint region, 

• 16×16 grid (super Sudoku), 

• 25×25 grid (Sudoku, the Giant), 

A complete Sudoku solution grid may be arrived at in 

more than one way, as we can start from any given clues that 

are distributed over the minigrids of a given incomplete grid. 

Nobody has yet succeeded in determining how many different 

starting grids there are. Moreover, a Sudoku starting grid is 

really only interesting to a mathematician if it is minimal, i.e., 

if removing a single number means that the solution is no 

longer unique. No one has figured out the number of possible 

minimal grids, which amounts to the ultimate count of distinct 

Sudoku puzzles. It is a challenge that is sure to be taken up in 

the near future.  

The Sudoku problem is important as it finds numerous 

applications in a variety of research domains with some sort of 

resemblance. Applications of solving a Sudoku instance are 

found in the fields of Steganography (Hong et al. 2008), Secret 

image sharing with necessary reversibility (Chang et al. 2010), 

Digital watermarking (Naini et al. 2010), Image authentication 

(Wu and Ren 2009), Image Encryption (Wu et al. 2011), 

Enhancement of genome sequence in DNA Sudoku (Enrich et 

al. 2009), Track maintenance through cooperating agents 

(Thaens, 2008) and so and so forth.  

By the way, all the earlier existing Sudoku solvers that 

are available in literature (and Internet) are entirely guess 

based and hence extremely time consuming (Jussien 2007). In 

addition, each of these existing solvers solves an instance of the 

problem considering the clues one-by-one for each of the blank 

locations. Often guessing may not be guided by selecting a 

desired path of computing a solution and hence exhaustive 

redundant computations are involved over there. On the other 

hand, the solver developed in this paper is a minigrid based 

guessed free Sudoku solver which is a more deterministic 

algorithmic approach in the sense that redundancy is 
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drastically reduced in this process of computations involved and 

that it always guarantees a solution if it exists in a reasonable 

amount of time. 

 

2. Literature Review: 

 

An n2×n2 Sudoku grid (consisting of n×n blocks) is an 

NP-complete problem (Yato and Seta 2003). So, it is unlikely to 

develop a polynomial time algorithm to solve this problem. 

There are quite a few logic techniques people use to solve this 

problem. Some are basic simple logic, some are more advanced. 

Depending on the difficulty of the puzzle, a mixture of 

techniques may be needed in order to solve a puzzle.  

Usually Sudoku instances are available in literature 

based on their classification of different levels of difficulty like 

easy, moderate, diabolical, etc. These classifications are based 

on the algorithmic approaches developed and executed in 

solving different Sudoku instances. Sometimes it is told that 

the instances are easier or harder based on the number of clues 

given along with their relative locations in a given instance but 

there is no proof to support such claims. Incidentally, the 

Sudoku solver developed herein does not differentiate the 

instances in terms of any level of difficulty, and each of the 

instances is equally easy or hard to solve using our approach, if 

a reasonable number of clues are given. Table 1 shows a 

comparison chart of the number of clues for different difficulty 

levels (Lee 2006). 

However, position of each of the empty cells also affects 

the level of difficulty. If two puzzles have the same number of 

clues at the beginning of a Sudoku game, the puzzle with the 

givens (or clues) in clusters is graded in higher level than that 

with the givens scattered over the space. Based on the row and 

column constraints, the lower bound on the number of clues are 

regulated in each row and column for each difficulty level (Lee 

2006). as shown in Table 2.  
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Table 1: Number of clues given in a Sudoku puzzle in defining the 

level of difficulty of a Sudoku instance. 

Difficulty level Number of clues 

1 (Extremely Easy) More than 46 

2 (Easy) 36-46 

3 (Medium) 32-35 

4 (Difficult) 28-31 

5 (Evil) 17-27 

 

Table 2: The lower bound on the number of clues given in each row 

and column of a Sudoku instance for each corresponding level of 

difficulty. 

Difficulty level Lower bound on the number of 

clues in each row and column 

1 (Extremely Easy) 05 

2 (Easy) 04 

3 (Medium) 03 

4 (Difficult) 02 

5 (Evil) 00 

 

It has already been told that our approach developed in 

this paper does not differentiate the instances, rather our 

approach computes a solution if it exists without guessing a 

possible value in a blank location and  minigrid based 

irredundant deterministic computations are involved over 

there. 

The basic technique that has been adopted for solving 

Sudoku puzzles is backtracking (Jussien 2007). It works as 

follows. The program places number 1 in the first empty cell. If 

the choice is compatible with the existing clues, it continues to 

the second empty cell, where it places a 1 (in some other row, 

column, and minigrid). When it encounters a conflict (which can 

happen very quickly), it erases the 1 just placed and inserts 2 

or, if that is invalid, 3 or the next legal number. After placing 

the first legal number possible, it moves to the next cell and 
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starts again with a 1. If the number that has to be changed is a 

9 (which cannot be raised by one in a standard Sudoku grid), 

the program backtracks and increases the number in the 

previous cell (the next-to-last number placed) by one. Then it 

moves forward until it hits a conflict. 

In this way, the program may sometimes backtrack 

several times before advancing. It is guaranteed to find a 

solution if there is one, simply because it eventually tries every 

possible number in every possible location. 

 

Figure 3. (a) An instance of a Sudoku puzzle. (b) Potential values in 

each blank cell are inserted based on the given clues of the Sudoku 

instance in Figure 3(a); here green digits are naked singles. (c) The 

concept of naked singles is preferably used to reduce the domain of 

probable candidate values in each blank cell, and the process is 

successive in nature to find out consequent naked singles, as much as 

possible. As for example, the naked single for cell [9,8] is 2, as 4 and 8 

have already been recognized as naked singles along row 9 and 

column 8; then 8 is a naked single for cell [7,8], as 2 and 4 are already 

identified naked singles along column 8, and so on. 
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Some other techniques include elimination based 

approach (Lee 2006) and soft computing based approach 

(Jussien 2007). Let us now focus to review the elimination 

based approach. In this approach, based on the given clues a 

list of possible values for every blank cell is first obtained. Then 

using the following different methods such as naked single, 

hidden single, lone ranger, locked candidate, twin, triplet, quad, 

X-wing, XY-wing, swordfish, coloring, we eliminate the multiple 

possibilities of each and every blank cell, satisfying the 

constraints that each row, column, and minigrid should have 

the numbers 1 through 9 exactly once. An instance of a Sudoku 

puzzle and its possible values of each blank cell are shown in 

Figures 3(a) and 3(b), respectively. 

 

B. Naked single 

If there is only one possible value existing in a blank 

cell, then that value is known as a naked single (Lee 2006). 

After assigning the probable values for each blank cell, as 

shown in Figure 3(b), we obtain the naked singles 3, 9, and 3 at 

locations [5,2], [5,8], and [8,3], respectively. So, we can directly 

assign these values to these cells. Then we eliminate these 

digits (or naked singles) from each of the corresponding row, 

column, and minigrid. Hence, after elimination of these 

numbers, as stated above, we obtain a modified (reduced) status 

of each blank cell as shown in Figure 3(c), wherein several 

other naked singles could be found (and this process is 

recursive until no naked singles are found).  

 

C. Hidden single 

Sometimes there are blank cells that do, in fact, have 

only one possible value based on the situation, but a simple 

elimination of candidate in that cell‟s row, column and minigrid 

does not make it obvious. This kind of possible value is known 

as a hidden single (Lee 2006). Suppose, if we re-examine the 

possible values in each cell of Figure 3(b), hidden single can 



Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for 

solving Sudoku puzzle in Guessed Free Manner 

 

 

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013 

1134 

easily be found in cell [7,2] whose value must be 4 as in 

minigrid numbered 7, 4 is not there as probable values in other 

cells. Similarly, for cell [4,9], the hidden single is 6 (as in other 

cells of the same minigrid 6 is not present as probable values). 

Most of the puzzles ranked as easy, extremely easy and 

medium can simply be solved using these two techniques of 

singles. 

 

D. Lone ranger 

Lone ranger is a term that is used to refer to a number 

that is one of multiple possible values for a blank cell that 

appears only once in a row, or column, or minigrid (Lee 2006). 

To see what this means in practice, consider a row of a Sudoku 

puzzle with all its possibilities for each of the cells (red digits 

are either givens or already achieved), as shown in Figure 4. In 

this row, six cells (with red digits) have already been filled in, 

leaving three unsolved cells (second, eighth, and ninth) with 

their probable values written in them. 

 

 

 

 

Figure 4. An example row of a Sudoku puzzle with a lone ranger 3 in 

the second cell.  

Notice that the second cell is the only cell that contains 

the possible value 3. Since none of the remaining cells in this 

row can possibly contains 3, this cell can now be confirmed with 

the number 3. In this case, this 3 is known as a lone ranger. 

 

E. Locked candidate 

Sometimes it can be observed that a minigrid where the 

only possible position for a number is in one row (or column) 

within that block, although the position is not fixed for the 

number. That number is known as a locked candidate (Lee 

2006). Since the minigrid must contain the number in a row (or 

5 1 9 8 6   7 6   7 2 
3   6   

7 4 
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column) we can eliminate that number not as a probable 

candidate along the same row (or column) in other minigrids. 

Consider the Sudoku puzzle along with its probable 

assignments for each blank cell, as shown in Figure 5. It can 

readily be found that minigrid numbered 6 should have 3 in the 

last row. So we can simply eliminate number 3 from cell [6,5] of 

minigrid numbered 5. Similarly, minigrid numbered 8 should 

have 3 in its first column. So, 3 can be eliminated as a possible 

candidate from cell [4,4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A Sudoku puzzle with probable locked candidates in the 

last row of minigrid 6 (and here the locked candidates are 3 and 5 in 

cells [6,7] and [6,8]), in the first column of minigrid 8 (and here the 

locked candidates are 9 and 3 in cells [8,4] and [9,4]), and so on. 

 

F. Twin 

If two same possible values are present for two blank 

cells in a row (or column) of a Sudoku puzzle, they are referred 

to as twin (Lee 2006). Consider the partially solved Sudoku 

puzzle as shown in Figure 6(a). Observe the two cells [2,5] and 

[2,6]. They both contain the values 2 and 3 (means either 2 or 
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3). So, if cell [2,5] takes value 2, then cell [2,6] must contain 3, 

or vice versa. This type of situation is an example of twin. 

Once a twin is identified, these values can be eliminated 

by striking through from the same row, column, and minigrid 

as shown in Figure 6(b), as the values cannot be probable 

candidates in other blank cells along the same row (or column) 

and in the same minigrid. 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

(b) 

Figure 6. (a) A partial Sudoku instance with presence of twin 2 and 3 

in cells [2,5] and [2,6]. (b) Elimination of probable values (that are 2 

and 3) based on the twin from the second row (2 is deleted from cells 

[2,1] and [2,3]) and from the same minigrid (2 and 3 are deleted from 

cells [1,4] and [1,5]). 
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(c) 

Figure 7. Example rows of Sudoku puzzles with different varieties of 

triplet. (a) A triplet of Variety# 1 with same three possible values 

present in three cells. (b) A triplet of Variety# 2 with same three 

possible values present in two cells and the other cell containing any 

two of them. (c) A triplet of Variety# 3 with three possible values 

present in one cell and the two other cells containing two different 

subsets of two possible values of the earlier three values. 

 

G. Triplet 

If three cells in a row (or column) are marked with a set 

of same three possible values, they are referred to as triplet 

(Lee 2006). Like twins, triplets are also useful for eliminating 

some other possible values for other blank cells. Triplet has 

several variations like the following. 

Variety# 1: Three cells with same three possible values, 

as shown in Figure 7(a).  

Variety# 2: Two cells with same three possible values 

and the other cell containing any two of the possible 

values, as shown in Figure 7(b).  

Variety# 3: One cell with three possible values and the 

two other cells containing two different subsets of two 

possible values of the former three values, as shown in 

Figure 7(c).  
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Once a triplet is found, we can eliminate all the values of 

the triplet that are there as possible candidates in other blank 

cells along the same row (or column) and in the same minigrid. 

 

H. Quad 

Analogous to triplet, a quad consists of a set of four 

possible values and these values are present in some form in 

four blank cells in a row (or column) of the Sudoku instance 

(Lee 2006). That is, if the values only exist in four (blank) cells 

in a row (or column), while each cell contains at least two of the 

four values, then other values (or numbers except the specified 

four values) can be eliminated from each of the assumed cells 

(forming the quad). Figure 8 shows a row of a Sudoku puzzle 

where the quad comprising the digits 1, 2, 4, 7 formed by the 

cells in column four, six, seven, and eight. So other possible 

values can straightway be eliminated from these cells, as shown 

by striking through the inapplicable digits in the figure.  

 

 

 

 

Figure 8. An example row of a Sudoku puzzle with quad comprising 

digits 1, 2, 4, and 7 present in columns four, six, seven, and eight. To 

support the digits present in the quad in the stated cells, other 

probable values (like 8 and 9 in columns six, seven, and eight) are 

eliminated from these cells of the quad, as these values (that are 8 

and 9) cannot be probable digits for the specified cells. 

 

An extended version of the above algorithm(Jussien 

2007) defines a set of terms like XWing, Swordfish, Hidden 

subset, etc, but ultimately it is also a trial based algorithmic 

way-out which is a guess based, cell based Sudoku solver 

(Jussien 2007). The XWing technique can be applied when there 
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will never get assigned to this value. The XWing technique can 

easily be generalized but swordfish is a technique that further 

makes the possibility of assigning a digit to a blank cell more 

specific. On the other hand, hidden subset is a kind of technique 

that is very similar to twin or triplet or quad that have already 

been explained above. 

On the other hand, all the soft computing based Sudoku 

solvers either use Genetic algorithm (Mantere and Koljonen 

2007) or Bee colony (Pacurib et al. 2009), which is exhaustive 

and extremely time-consuming. Needless to mention that these 

techniques use their own set of operators to execute the 

respective algorithms. Genetic algorithms belong to the larger 

class of evolutionary algorithms that generate solutions to 

optimization problems using techniques inspired by natural 

evolution, such as selection, crossover, mutation, and 

inheritance.  

The Simulated annealing based Sudoku solver is a 

probabilistic Sudoku solver. The general design is capable of 

solving a Sudoku instance of order up to fifteen [7]. It has been 

claimed that the solver has solved in actual hardware Sudoku 

puzzles of up to order 12 within the competition-imposed time 

limits. 

 

3. Proposed Algorithm for solving Sudoku puzzle in a 

guessed free manner: 

 

All the previous algorithms discussed in the literature 

survey are cell based and some amount of guessing is always 

involved in all the technique. In this paper an attempt has been 

made to develop an algorithm which is minigrid based, i.e., we 

have to individually go through nine minigrids (instead of 81 

cells) and perform backtracking only on them, which is less 

time consuming. Moreover, no guessing is involved and no 

redundant computation is performed during the whole 

computation.  
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Our proposed algorithm considers each of the minigrids 

that may be numbered as 1 through 9 as shown in Figure 9. 

Each minigrid may or may not have some clues as numbers 

that are given. We first consider a minigrid that contains a 

maximum number of clues, and if there are two or more such 

minigrids, we consider the one with the least minigrid number. 

Needless to mention that each of the cells in a minigrid, 

either containing a clue or a blank cell, is somehow 

differentiated from each of the cells of another minigrid as the 

position of a cell in a Sudoku instance could be specified by its 

row number and column number, which is unique. So, a cell [i, 

j] of minigrid k may either contain a number l as a given clue or 

a blank location that is to be filled in by inserting a number m, 

where 1 ≤ i, j, k, l, m ≤ 9.  

                             

 

 

 

 

 

 

 

 

Figure 9: The structure of a 99 Sudoku puzzle (problem) with its 

nine minigrids of size 33 each as numbered 1 through 9. Minigrid 

number 1 consists of the cell locations [1, 1], [1, 2], [1, 3], [2, 1], [2, 2], 

[2, 3], [3, 1], [3, 2], and [3, 3], minigrid number 2 consists of the cell 

locations [1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], and [3, 6], 

and so on. 

 

Now to start with a minigrid as stated above, we find 

that the minigrid 3 contains a maximum number of clues, i.e., 

4, among all the minigrids, and each of the minigrids 1 and 2 

contains less number of clues than that of minigrid 3 (see 

Figure 1(a)). For example, for the Sudoku instance as shown in 

Figure 1(a), each of the minigrids 3, 5, and 7 contains four clues 

4 5 6 

7 

3 2 1 

8 9 
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each; hence, at the beginning, we consider minigrid 3 for 

computing all its valid permutations of the missing numbers for 

its blank locations (as 3 is the minimum minigrid number).  

Besides, for a given Sudoku instance, we know all the 

clues given as well as the clue positions among the cells of a 

minigrid and subsequently the blank cells are also known to us. 

For example, the given clues in minigrid 3 of Figure 1(a) are 9 

at location [1, 8], 8 at location [1, 9], 1 at location [2, 8], and 5 at 

location [3, 9]. Here we denote a cell location of a Sudoku 

instance by [row number, column number], where each of row 

number and column number varies from 1 to 9. Hence the 

blank locations are [1, 7], [2, 7], [2, 9], [3, 7], and [3, 8], and the 

missing digits are 2, 3, 4, 6, and 7. 

In this algorithm, we compute all possible permutations 

of these missing digits in minigrid 3, where the first 

permutation may be 23467 (the minimum number) and the last 

permutation may be 76432 (the maximum number using the 

missing digits). Here as the number of blank locations is five, 

the total number of permutations is 5!, which is equal to 120. 

Now the algorithm considers each of these permutations one 

after another and identifies only the valid set of permutations 

based on the given clues available in rows and columns in other 

minigrids (that are minigrids 1, 2, 6, and 9). As for example, if 

we consider the first permutation 23467 and place the missing 

digits, respectively, in order in locations [1, 7], [2, 7], [2, 9], [3, 

7], and [3, 8], which are arranged in ascending order, we find 

that this permutation is not a valid permutation. This is 

because the location [6, 7] already contains 2 as a clue of 

minigrid 6, and we cannot place 2 at [1, 7] as the permutation 

suggests. Also the location [3, 5] contains 7 as a clue of minigrid 

2, and we cannot place 7 at [3, 8] as it is supposed to place. 

Similarly, we may find that the last permutation 76432 

is also not a valid permutation as location [4, 9] already 

contains 4 as a clue of minigrid 6, and we cannot place 4 at [2, 

9] as the permutation suggests. But we may observe that 74362 
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is a valid permutation as we may safely place 7 at [1, 7], 4 at [2, 

7], 3 at [2, 9], 6 at [3, 7], and 2 at [3, 8] based on the other clues 

in the corresponding rows and columns of other minigrids (that 

are minigrids 1, 2, 6, and 9). 

This is how we may compute all valid permutations of 

minigrid 3, and proceed for a next minigrid that belongs to 

among the row and column minigrids of minigrid 3 which 

contains a maximum number of clues but the minigrid number 

is minimum. Among all the valid permutations (for their 

respective blank locations) of minigrid 3, at least one 

permutation must last at the end of computation of valid 

permutations of each of the remaining minigrids if the solution 

of the given Sudoku instance is unique. To find out the next 

minigrid to be considered, we go through the row and column 

minigrids of minigrid 3 in the Sudoku instance of Figure 1(a) 

(that are minigrids 1, 2, 6, and 9), and among these minigrids 

we find that the minigrid 1 contains a maximum number of 

clues, i.e., 3 (which is equally true for each of the minigrids 6 

and 9), and its minigrid number is the minimum. 

So, now we consider minigrid 1, and as done before for 

minigrid 3, we find the given clues and the missing digits 

therein along with their locations. Here we do exactly the same 

as we did earlier in computing all permutations of the missing 

digits in minigrid 3. At the time of identifying all valid 

permutations of minigrid 1, we consider one valid permutation 

(at their respective blank locations) of minigrid 3 in addition to 

all given clues of the instance under consideration. If we get at 

least one valid permutation for minigrid 1 (obeying an assumed 

valid permutation of minigrid 3), we consider it for some 

subsequent computation of permutations of another minigrid; 

otherwise, we consider a second valid permutation of minigrid 

3, and based on that we compute another set of valid 

permutations for minigrid 1, and so on.  

Now it is straightforward to declare that here the 

minigrid that is to be considered is one among the minigrids 2, 
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4, 6, 7, and 9 as the row and column minigrids of minigrids 3 

and 1 (for which we have already computed valid 

permutation(s) one after another); note that neither of 

minigrids 5 and 8 is a row or column minigrid of minigrids 3 

and 1. Hence following the instance in Figure 1(a), we consider 

minigrid 7 for computing all its valid permutations allowing for 

one valid permutation of minigrid 3 and then one subsequent 

valid permutation of minigrid 1, in addition to all given clues of 

the instance under consideration, as each of the minigrids 2, 4, 

6, and 9 contains less number of clues than that of minigrid 7. 

Here in computing all valid permutations of minigrid 7, we may 

not consider an assumed valid permutation of minigrid 3, as 

this minigrid is neither in a row nor in a column of minigrid 7, 

but we have to consider a valid permutation of minigrid 1 and 

all given clues in the Sudoku instance (primarily the clues 

given in minigrids 4, 8, and 9). 

This process is continued till a valid permutation of a 

minigrid (or a set of valid permutations of a group of minigrids) 

is propagated to compute a valid permutation of a subsequent 

minigrid, and eventually a valid permutation of the last 

minigrid (i.e., the ninth minigrid; not necessarily minigrid 

number 9) is computed, which altogether generate a desired 

solution of the given Sudoku instance. It may so happen that up 

to t minigrids t valid permutations that we consider in a series 

match each other towards a valid combination of the given 

Sudoku instance but there is no valid permutation for the 

(t+1)th minigrid obeying the earlier assumed t valid 

permutations, where 1  t  9.Then we consider a second valid 

permutation of the tth minigrid, and after that we try to 

compute a valid permutation for the (t+1)th minigrid, if one 

exists. If for none of the valid permutations of the tth minigrid a 

valid permutation for the (t+1)th minigrid is obtained, we 

consider a second valid permutation for the (t−1)th minigrid that 

leads to compute a new set of valid permutations for the tth 

minigrid, and so on. 
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We claim that we must acquire at least one valid permutation 

for each of the minigrids one after another, obeying at least one 

valid permutation computed for each of the minigrids 

considered earlier in the process of assuming the minigrids in 

succession; we claim this result in the form of the following 

theorem if at least one solution of the given Sudoku puzzle 

exists. 

Theorem 1: There is at least one valid permutation for 

the missing digits for their respective blank locations in each of 

the minigrids such that the combination of all such (nine) valid 

permutations for all the (nine) minigrids produces a desired 

solution, if there exists a solution of a given Sudoku instance. 

Proof: The proof of the theorem is straightforward 

following the steps of the inherent development of the 

algorithm as stated above, if a feasible solution of the given 

Sudoku instance is there. We may start with one valid 

permutation for some earlier assumed minigrid that may not be 

a valid partial solution in combination for the whole Sudoku 

instance; then we must reach to a point of computing a valid 

permutation of some subsequent minigrid when no such 

permutation is obtained for that minigrid. In that case we are 

supposed to return back to the former minigrid we had to 

consider a next valid permutation, if any, for the same (i.e., for 

the previous minigrid) and move to the current minigrid for 

computing its valid permutations accordingly. Hence it is clear 

that if one valid permutation for some earlier assumed minigrid 

is not a valid partial solution in combination for the whole 

Sudoku instance, then we must have to return back to that 

prior minigrid to consider a new valid permutation of the same 

to continue the process again in computing all valid 

permutations of its subsequent minigrid, and so on. In this way, 

a set of individual valid permutations is to be differentiated so 

that in combination of all of them a desired solution of the given 

Sudoku instance is computed, if one such solution exists.          



Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for 

solving Sudoku puzzle in Guessed Free Manner 

 

 

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013 

1145 

To see the algorithm at a glance, let us write it in the form as 

follows:  

Algorithm: A Guessed Free Sudoku Solver – Version 1 

Input: A Sudoku instance, P of size 9×9. 

Output: A solution, S of the given Sudoku instance, P. 

Step 1: Compute the number of clues, digit(s) given as clue, 

and the missing digits in each of the minigrids of P. 

Step 2: Compute SM, a sequence of minigrids that contains all 

the minigrids in succession, wherein M SM is the minigrid 

(and the first member in SM) with a maximum number of clues 

and whose minigrid number is minimum. In SM, a member N is 

a minigrid which is either in the row or in the column of any of 

its earlier members in SM including M that contains a 

maximum number of clues and whose minigrid number is 

minimum, where 1  N ≤ 9. 

Step 3: Compute all valid permutations for the missing digits 

in M, and store them. 

Step 4: For all the remaining minigrids in succession in SM do 

the following:  

Step 4.1: Consider a next minigrid, N SM, and compute all its 

valid permutations for the missing digits in N assuming a valid 

permutation for each of the earlier minigrids up to M, and store 

them. 

Step 4.2: If one valid permutation for N is obtained, then 

consider a next minigrid of N in SM, if any, and compute all its 

valid permutations for the missing digits in this minigrid 

assuming a valid permutation for each of the earlier minigrids 

up to M, and store them. 

 Else consider a next valid permutation, if any, of the 

immediately previous minigrid of N, and compute all its valid 

permutations for the missing digits in N assuming a valid 

permutation for each of the earlier minigrids up to M, and store 

them. 

Step 5: If all the valid permutations of the immediate successor 

minigrid of M are exhausted to obtain a valid combination for 
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all the nine minigrids in SM, then consider a next valid 

permutation of M and go to Step 4. The process is continued 

until a valid combination for all the nine minigrids in SM is 

obtained as a desired solution S for P; otherwise, the algorithm 

declares that there is no valid solution for the given instance P.  

Now it is straightforward to compute SM for a given Sudoku 

instance P. As for example, consider the Sudoku instance given 

in Figure 1(a). According to this instance the sequence SM of 

minigrids is 3, 1, 7, 6, 5, 9, 4, 8, 2 as it has been described and 

performed in Step 2 of the first version of the algorithm above.  

Computation of all valid permutations for the missing 

digits in a minigrid is an important task of the present 

algorithm. At the time of computing only all valid permutations 

for the missing digits, we follow a tree data structure, where 

the degree of the root of the tree is same as the number of 

missing digits, and level-wise it reduces to one to obtain the leaf 

vertices, where each leaf at the lowest level is a valid 

permutation of all the missing digits based on the clues given in 

P (and the assumed valid permutation(s) in other minigrid(s) in 

subsequent iterations). 

As for example, the number of clues given in minigrid 3 

of Figure 1(a) is 4, and the missing digits are 2, 3, 4, 6, and 7. 

The proposed algorithm likes to place each of the permutations 

of these missing digits in the blank locations [1, 7], [2, 7], [2, 9], 

[3, 7], and [3, 8]. Here the tree structure we like to compute is 

shown in Figure 10, whose root does not contain any 

permutation of the missing five digits, and it is represented by 

„‟. This root is having five children where the first child 

leads to generate all valid permutations staring with 2, the 

second child leads to generate all valid permutations staring 

with 3, and so on. 

Now note that none of the permutations starting with 2 

is a valid permutation as column 7 of minigrid 6 contains 2 as 

given clue (at location [6, 7]). So, we do not expand this vertex 

(i.e., vertex with permutation „2‟) further in order to 
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compute only the set of desired valid permutations. Similarly, 

we do not expand the child vertex with permutation „6‟, as 

location [1, 3] contains 6 as given clue. Up to this point in time, 

as either 3, or 4, or 7 could be placed at [1, 7], we expand each 

of the child vertices starting with permutations 3, and 4, and 7, 

as shown in Figure 10. 

Similarly, we expand the tree structure inserting a new 

missing number at its respective location (for a blank cell) 

leading from a valid permutation (as vertex) in the previous 

level of the tree. Correspondingly, we verify whether the 

missing digit could be placed at the respective location for a 

blank cell of the given Sudoku instance P. If the answer is „yes‟, 

we further expand the vertex; otherwise, we stop expanding the 

vertex in some earlier level of the tree structure prior to the last 

level of leaf vertices only. As for example, the vertex with 

permutation „742‟ is not expandable, because we cannot place 

2 at [2, 9] as [2, 1] contains a 2 as given clue. So, this is how 

either a valid permutation is generated from the root of the tree 

structure reaching to a bottommost leaf vertex, or the process of 

expansion is terminated in some earlier level of the tree that 

must generate other than valid (unwanted) permutations at 

this point in time. 

Interestingly, Figure 10 shows the reality that the 

number of possible permutations of five missing digits is 120, 

and out of them only seven are valid for minigrid 3 of the 

Sudoku instance shown in Figure 1(a). Note that the given 

clues in P are nothing but constraints and we are supposed to 

obey each of them. So, usually, if there are more clues, P is 

more constrained and hence the number of valid permutations 

is even much less, and the solution, if it exists, is unique in 

most of the cases. On the contrary, if there are fewer clues in P, 

more valid permutations for some minigrid of P could be 

generated, computation of a solution for P might take more 

time, and P may have two or more valid solutions. In any case, 

if there is a unique solution of the assumed Sudoku instance (in 
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Figure 1(a)), out of these seven valid permutations only one will 

finally be accepted following the subsequent steps of the 

algorithm. 

Now the algorithm considers one valid permutation (out 

of the seven permutations) of minigrid 3 and all given clues in 

P, and generates all valid permutations for minigrid 1. If at 

least one valid permutation for minigrid 1 is obtained, we 

proceed for generating all valid permutations for minigrid 7 

obeying all given clues in P and the assumed valid 

permutations of minigrids 3 and 1; otherwise, a second valid 

permutation of minigrid 3 is considered, for which in a similar 

way, we generate all valid permutations for minigrid 1, and so 

on. 

This is how the algorithm proceeds and generates all 

valid permutations of a minigrid under consideration obeying 

the given clues in P and a set of assumed valid permutations, 

one for each of the minigrids considered earlier in succession, 

up to this point in time. 

 

 
 

Figure 10: The permutation tree for generating only valid 

permutations of the missing digits in minigrid 3 of the Sudoku 

instance shown in Figure 1(a). 
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Note that at the time of computing a set of valid 

permutations for a minigrid, we have to consider clues and 

(earlier computed) valid permutations in only four of the 

remaining eight minigrids that are adjacent to the minigrid 

(currently) under consideration. As for example, while 

computing valid permutations for minigrid 7, we have to 

consider one valid permutation of minigrid 1 and the clues 

given in minigrids 1, 4, 8, and 9 only; here the assumed valid 

permutation of minigrid 3 has no use while computing valid 

permutations for minigrid 7. In the same way, while computing 

valid permutations for minigrid 6, only we have to consider the 

assumed valid permutation of minigrid 3 (up to this point in 

time) and the clues given in minigrids 3, 4, 5, and 9 only; here 

the assumed valid permutations of minigrids 1 and 7 have no 

use while computing valid permutations for minigrid 6, and so 

on. 

Now we discuss about the size of the tree structure 

under consideration. If p be the number of blank cells in a 

minigrid and the Sudoku instance is of size nn, then the 

computational time as well as the computational space 

complexities of the guessed free Sudoku solver developed herein 

is (p!x)n = O(pn), where x is the number of other than valid 

permutations based on the clues given in the Sudoku instance 

P. Our observation is that for a given Sudoku instance P, x is 

very close to p!, and hence p!x is a reasonably small number 

and in our case the value of n is equal to 9. Hence, the 

experimentations made by this algorithm take negligible 

amount of clock time, of the order of milliseconds. We conclude 

that the algorithm developed in this paper guarantees a valid 

solution of a given Sudoku puzzle, if one exists, and 

theoretically it takes time and space exponential in size; these 

has been stated in the following theorem and proved thereafter. 

 

Theorem 2: The guessed free Sudoku solver developed 

in this paper guarantees a valid solution of a Sudoku instance, 
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if one exists, and it takes time and space complexities O(pn), 

where p is the number of blank cells in a minigrid of a Sudoku 

instance of size nn. 

Proof: The guessed free Sudoku solver developed in this paper 

considers the minigrids of a given Sudoku instance P in a 

particular sequence in a deterministic way. Hence, if there be a 

solution S for P, then each minigrid must have its own valid 

permutation for its missing digits and in combination of all of 

them an overall valid solution S for P is obtained, if S is unique.  

Incidentally, the guessed free Sudoku solver generates a set of 

only valid permutations for a minigrid, and the required valid 

permutation for the minigrid in S must be a member of this set. 

If the algorithm starts from a valid permutation for a minigrid, 

or considers a valid permutation for some subsequent minigrid, 

which may not be a valid permutation towards computing S, 

then the algorithm must reach to a point when no valid 

permutation for a later minigrid will be generated, and we have 

to revert back to the previous minigrid to consider its next valid 

permutation. 

In this process of computation, if S is unique for P, the 

algorithm must consider the valid permutation of the initial 

minigrid, which will be the final valid permutation for the 

minigrid in S, then generation of permutations of the 

subsequent minigrids and their consideration will eventually 

lead to the desired solution S for P. This process might have 

several backtrackings, but as the number of valid permutations 

for a minigrid is negligibly less and the number of minigrids is 

confined to nine only, S is guaranteed to be computed in a 

reasonable amount of time, if it exists. 

Now it is straightforward to prove that the algorithm 

takes both computational time and space O(pn), as generation of 

all valid permutations of a minigrid is the dominating 

computations involved in this algorithm, where p is the number 

of blank cells in a minigrid of P of size nn. Here pn is the size 

of the tree structure we compute while generating all valid 
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permutations of the missing digits in a minigrid. In practice, 

the size of the tree structure is significantly less than the 

asymptotic upper bound mentioned herein.  

 

4. Conclusion 

 

In this paper we have proposed an exclusive minigrid 

based Sudoku solver algorithm, which is completely guessed 

free. The solver considers each of the minigrids (instead of 

blank cells in isolation) of size 3×3 each that has been 

developed for the first time in designing such an algorithm for a 

given Sudoku puzzle of size 9×9. In our algorithm a pre-

processing is there for computing only all valid permutations 

for each of the minigrids based on the clues in a given Sudoku 

puzzle.  

It has been observed in most practical situations that 

the number of valid permutations is appreciably less than the 

total number of possible permutations for each of the minigrids, 

and even if there are less clues in some minigrid of an instance, 

clues present in four adjacent row and column minigrids 

severely help in reducing the ultimate number of valid 

permutations for that minigrid too. Anyway, this approach of 

minigrid-wise computation of valid permutations and checking 

their compatibility among row minigrids and column minigrids 

is absolutely new and done for the first time in this domain of 

work. 

As we consider minigrids for finding only the valid 

solutions of a given Sudoku puzzle instead of considering the 

individual (blank) cells, therefore, the computations involved in 

the algorithm is significantly reduced. In the case of a 9×9 

Sudoku puzzle, there are 81 such cells with some clues (which 

is less) and the remaining blank cells (which is more), whereas 

there are only nine such minigrids each of which consists of 3×3 

cells. Here the observation to a Sudoku puzzle is not by 

searching of missing numbers cell-by-cell (as if searching for an 



Arnab K. Maji, Sudipta Roy, Rajat K. Pal – A Novel Algorithmic approach for 

solving Sudoku puzzle in Guessed Free Manner 

 

 

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPTEMBER 2013 

1152 

address by moving through streets); rather, it is one step above 

the ground of the puzzle by considering groups of cells or 

minigrids (and searching the same from a bird‟s eye view). 

The brilliancy of the algorithm developed in this paper is 

that the same logic can also be straightway applied for larger 

Sudoku instances such as 16×16, 25×25, or of any other 

rectangular sizes (with their respective objective functions). 

The level of difficulty is another important issue that 

almost all the earlier Sudoku solvers consider while developing 

an algorithm. There are no hard and fast rules that state the 

difficulty level of a Sudoku puzzle. A sparsely filled Sudoku 

puzzle may be extremely easy to solve, whereas a densely filled 

Sudoku puzzle may actually be more difficult to crack. From a 

programming viewpoint, we can determine the difficulty level of 

a Sudoku puzzle by analyzing how much effort must be 

expended to solve the puzzle, and the different levels of 

difficulty are easy, medium, difficult, extremely difficult, etc. 

Incidentally, the Sudoku solver developed in this paper does not 

depict any level of difficulty; rather, all the Sudoku instances 

are having the same level of difficulty. In some cases, more 

valid permutations may be generated for some minigrid, but in 

general, the number of valid permutations is much less, and the 

minigrids with smaller number of valid permutations in fact 

guide to compute eventually all the desired solutions for a given 

Sudoku instance.  
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