

6089

ISSN 2286-4822

www.euacademic.org

EUROPEAN ACADEMIC RESEARCH

Vol. II, Issue 5/ August 2014

Impact Factor: 3.1 (UIF)

DRJI Value: 5.9 (B+)

Voice Chat Application Using Socket

Programming

MAHA SABRI ALTEMEM
Ass. Lecturer

Computer Science Department, College of Science,

Karbala University, Karbala,

 Iraq

Abstract:

 This report presents a detail overview in developing a client-

server based voice chat application using socket programming. The

application is built using Java and is using UDP datagram. The

primary objective of this report is to present the principles behind

socket programming and the libraries available for socket

programming applications in Java.

Key words: voice chat application, socket programming

I. Introduction

Client-server program is no longer a foreign concept in

computer networks. Instead, the Internet to date is composed of

a series of various client-server applications. The client and

server refer to the role whereby the client program is the entity

that initiates a communication and server program is the one

that waits passively for and eventually respond to the client

that is trying to initiate communication with it. There are

several advantages of client-server model which includes

centralization of resources, flexibility, scalability and

interoperability. A socket on the other hand, is an abstraction

in which a program may send and receive data similar to the

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6090

way input-output of a system is handled. An important

characteristic that has driven programmers to program using

socket based programming is due to its transparency. This

means that, regardless if a socket program is written in Java

language, it will still be able to communicate with other socket

program which was built using other languages such as C or

C++. This voice chat application using socket programming is

closely related to distributed computing whereby the client and

server paradigm is a distributed application in which the

workload are distributed among the nodes namely the client

and the server. These nodes serves the same purpose makes it

resembles the distributed computing application

characteristics.

II. Literature Review

The socket programming concept has benefited many areas of

computer networks today. The socket application developed in

this work is based on the concept of distributed computing. This

is relevant as to that it allows for resources to be distributed

among several node in the network [1]. Socket programming

helps to implement the bottom level of network communication,

using Application Programming Interface (API). A similar

application is built by other researchers as presented in [2], [3]

and [4]. This application is also using a multicast datagram

socket class which is useful for sending and receiving IP

multicast packets. Furthermore, a multicast socket is also a

UDP datagram socket which is capable for joining “group”. This

additional functionality is an added advantage for using

multicast socket [5].

III. Methodology

A. Authentication Access

This application requires user to perform an authentication

procedure whereby they are required to insert a user name and

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6091

password in order to use this voice chat application. The

interface for the login window is shown in Figure 1. The

application will be launched when the user entered the correct

username and password. However, if the user entered wrong

combination of username and password more than three times,

the program will immediately terminate itself in order to avoid

further brute force attempt.

Figure 1: Login Window

Figure 2: Main User Interface

 B. Main User Interface

Figure 2 presents the main user interface for our voice chat

application. The interface includes labels and button that

increase the application’s usability and ease of use. The java

code of this part of the application is presented in Figure 3 and

Figure 4.

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6092

Figure 3: Java code for the main user interface (i)

Figure 4: Java code for the main user interface (ii)

C. Connecting to Server

Users may connect to the server simply by clicking on the ‘Start

Connect’ button provided on the main interface. Once

connection with the server is established, user may have the

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6093

option to either continue on using text chatting by writing their

message at the ‘ Your Message’ text box area or they may use

the voice functionality by clicking on the ‘Voice’ button. The

‘Voice’ button is disabled until the user successfully connected

to the server as shown in Figure 5 and Figure 6.

Figure 5: Disabled ‘Voice’ button before user connect to the server

Figure 6: ‘Voice’ button is enabled after the user is connected to the

server

Server as the entity that listens for request to be connected will

only react after connection request is accepted. In which in this

case, when user click the ‘Start Connect’ button as mentioned

previously. Figure 7 presents the java code where the server is

put to listening mode until it received an action or event from

the client or user.

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6094

Figure 7: Java code for starting the server

D. Sending

The sending process of this program happens when client

initiates the communication with the server using the ‘Start

Connect’ button, the java application will instantiate a

multicast socket as shown in Figure 8.This socket will be bind

with the port number of the server which is 6789. The code

shows that, after the socket is created, the program will fill the

buffer with some data, followed by the creation of datagram

packet.

Figure 8: Java code for request sent by client Receiving

The receiving part of the java code presents the variable and

the classes involve when the servers side is receiving message

and request from the client. In receiving message, the socket

will be prepared with the necessary IP address and port

number, along with joining a group (using join Group()

function) so that the socket will be ready to receive packets.

This is presented in the java code in Figure 9.

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6095

Figure 9: Java code for server side when receiving message

E. Audio

The audio part of this application is handled by the code shown

in Figure 10. In this code, we are using captureAudio() function

to print out the audio information. The same function contains

the required codes to get audio from the input device

(i.e:microphone) as well as calling the thread responsible for

playing out the audio.

Figure 10: Java code for printing audio devices information,

retrieving and request for sending audio

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6096

F. Sending Audio

Figure 11 presents the java code for sending to the output

device which in this case is a speaker. These parts of the code

also create a thread that is responsible to play out the audio on

the speaker.

Figure 11: Java code for sending audio and call thread to receive

audio

In order to send audio to the server, we have used the following

code presented in Figure L. In order to do this, we are using a

tempBuffer () function to prepare the server for receiving the

audio. The audio will be sent using a datagram with its

respective IP address and port number.

Figure 12: Java code for sending audio to server

One of the important parts of this chat voice application is to

code and format the audio which the java code is presented in

Figure 13.

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6097

Figure 13: Java code for coding and formatting audio

Receiving and playing the audio from the server requires the

use of different set of functions as shown in Figure 14. The

datagram received from the server will be written to the

temporary buffer at the receiver side and the audio will played

using a thread.

Figure 14: Java code for receiving and playing audio from server

IV. Conclusion and Discussion

This paper presents the detail implementation of a voice chat

application that is using socket programming method. In this

work, we have chosen Java as the programming language as it

covers an adequate range of functions and classes to develop

this socket-based programming application. The application is

subject to further improvement in the future in which other

functionalities may be included to enhance its overall function.

REFERENCES

Law, K.L.E., Leung, R. 2002. "A design and implementation of

active network socket programming." Computer

Communications and Networks. 78 -38 ,41-41 . [1]

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6098

Malhotra, A., Sharma, V., Gandhi, P., Purohit, N. “UDP based

chat application." Computer Engineering and Technology

(ICCET), 2010 2nd International Conference vol.6:

pp.V6-374-V6-377. [2]

Kaur, D., Dhanda, P., Mirchandani, M. 2000. "Development of a

real time chat application on intelligent network based

on fuzzy logic," Circuits and Systems, 2000.” Proceedings

of the 43rd IEEE Midwest Symposium vol.3, pp.1376-

1380. [3]

Shirali-Shahreza, M.H., Shirali-Shahreza, M. 2007. "Text

Steganography in chat." Internet. ICI. 3rd IEEE/IFIP

International Conference in Central Asia pp.1-5, 26-28.

[4]

Wang, Ho Leung, Tsuhan Chen, Hendriks, F., Xiping Wang,

and Zon-Yin Shae. "eMeeting: a multimedia application

for interactive meeting and seminar." Global

Telecommunications Conference, GLOBECOM. IEEE 3,

pp. 2994- 2998, 17-21. [5]

Appendix A

Chatting Code In JAVA Programming

import javax.sound.sampled.DataLine;

import javax.sound.sampled.Mixer;

import javax.sound.sampled.SourceDataLine;

import javax.sound.sampled.TargetDataLine;

class GetTheCurrentTime {

public Date getTime() {

// This Class return the time of delivered picket on

Second/ Day/ Month and year // one way

long currentTimeInMillis =System.currentTimeMillis();

Date today = new

Date(currentTimeInMillis);// System.out.println(today);

// another way

import java.util.logging.Level;

import java.util.logging.Logger;

import

javax.sound.sampled.LineUnavailableException;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.net.*;

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6099

import java.io.*;

import java.util.Calendar;

import java.util.Date;

//for voice

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.net.Socket;

import javax.sound.sampled.AudioFormat;

import javax.sound.sampled.AudioInputStream;

import javax.sound.sampled.AudioSystem;

import javax.sound.sampled.DataLine;

import javax.sound.sampled.Mixer;

import javax.sound.sampled.SourceDataLine;

import javax.sound.sampled.TargetDataLine;

class GetTheCurrentTime {

public Date getTime() {

// This Class return the time of delivered picket on

Second/ Day/ Month and year

// one way

long currentTimeInMillis =System.currentTimeMillis();

Date today = newDate(currentTimeInMillis);

// System.out.println(today);

// another way

today = cal.getTime();

return today;

// System.out.println(today);}}

public class TestVoiceChat{

String mes1,mes;

/* This class add many Buttons, Textarea for the

Client/ Server User Interface */

Thread thread;

MulticastSocket socket;

InetAddress add;

JFrame frame;

JPanel panel,panel2;

JTextArea area,area2,area3,area4,area5;

JScrollPane pane,pane2;JLabel

label,label2,label3,label4,label5,label6;

JButton button,button1,button2,button6;

// for voice

//define socket

DatagramSocket server_socket;

//audio

ByteArrayOutputStream byteArrayOutputStream;

AudioFormat audioFormat;

TargetDataLine targetDataLine;

SourceDataLine sourceDataLine;

AudioInputStream audioInputStream;

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6100

public static void main(String[] args) {

if (args.length == 0)

{

TestVoiceChat u = new TestVoiceChat();

}

else

System.exit(0);

}

public TestVoiceChat(){

frame = new JFrame("Clint/Server Chating");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setUndecorated(true);

frame.getRootPane().setWindowDecorationStyle(JRoo

tPane.PLAIN_DIALOG);

panel = new JPanel();

panel.setLayout(null);

button1 = new JButton("Start Connect");

button6 = new JButton("Voice");

button1.setBounds(273, 110,115,40);

button6.setBounds(273, 210,110,40);

button6.setEnabled(false);

label3 = new JLabel("IPAddress:");

label3.setBounds(273, 255,100, 20);

Icon image = newImageIcon("test.gif");

label6 = newJLabel("ftcnty",image, SwingConstants.LEFT);

label6.setBounds(30, 450, 150,150);

area3 = newJTextArea("255.255.255.255");

area3.setBounds(273, 275,100, 20);

label4 = new JLabel("sendingport:");

label4.setBounds(273, 300,100, 20);

area4 = new JTextArea("5000");

area4.setBounds(273, 320,100, 20);

label5 = new JLabel("receivingport:");

label5.setBounds(273, 345,100, 20);

area5 = new JTextArea("6000");

area5.setBounds(273, 365,100, 20);

button1.addActionListener(new

ActionListener(){

public void actionPerformed(ActionEvente){

new StartServer();

button6.setEnabled(true);}});

button6.addActionListener(new

ActionListener(){

public void actionPerformed(ActionEvente){

// Start Voice Code

captureAudio();

button6.setEnabled(false);}});

panel.add(button1);

panel.add(button6);

panel.add(label3);

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6101

panel.add(label4);

panel.add(label5);

panel.add(label6);

panel.add(area3);

panel.add(area4);

panel.add(area5);

button2 = new JButton("Stop Connect");

button2.setBounds(273, 160, 110,40);

button2.addActionListener(new

ActionListener(){

public void actionPerformed(ActionEvent ae){

thread.interrupt();

socket.close();

area2.append("Server is stopped\n");

button1.setEnabled(true);

button2.setEnabled(false);}});

button2.setEnabled(false);

panel.add(button2);

label = new JLabel("Your Message:");

label.setBounds(10, 210, 100, 360);

panel.add(label);

label2 = new JLabel("Window Chating");

label2.setBounds(10, 10, 150, 20); panel.add(label2);

area2 = new JTextArea();

pane2 = new JScrollPane(area2);

pane2.setBounds(10, 30, 260, 350);

panel.add(pane2);

area = new JTextArea();

pane = new JScrollPane(area);

pane.setBounds(10, 400, 260, 40);

panel.add(pane);

button = new JButton("Send Text ");

button.setBounds(273,400, 110, 40);

button.addActionListener(new

ActionListener(){

public void

actionPerformed(ActionEvent e){

new SendRequest(); }

}

);

panel.add(button);

frame.add(panel);

frame.setSize(410, 650);

frame.setVisible(true);

frame.setLocation(300, 50);

}

public class StartServer implements

Runnable{

StartServer(){

thread = new Thread(this);

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6102

thread.start();

button1.setEnabled(false);

button2.setEnabled(true);

}

public void run(){

// Server side that receive the

message

try{

socket = new MulticastSocket(6789);

add = InetAddress.getByName("224.0.0.0");

socket.joinGroup(add);

area2.append("Server is started\n");

while(true){

try{

//Receive request from client

byte[] buffer = new byte[65535];

DatagramPacket packet = new DatagramPacket(buffer, buffer.length, add, 6789);

socket.receive(packet);

String addressclint= packet.getAddress().toString();

//String

mes1 = new String(buffer).trim() ;

// String

GetTheCurrentTime GCT=new GetTheCurrentTime();

// Date mm=GCT.getTime();

area2.append(addressclint +" :

"+mes1+ "\n");

area2.append(GCT.getTime()

+" \n\n ");

}

catch(UnknownHostException ue){}

}

}

catch(IOException e){}

}

}

public class SendRequest{ //inclass

SendRequest(){

// client side that send the packets

try{

add = InetAddress.getByName("224.0.0.0");

MulticastSocket socket = new

MulticastSocket();

socket.joinGroup(add);

byte[] buffer = new byte[65535];

String mess = area.getText();

buffer = mess.getBytes();

DatagramPacket packet = new

DatagramPacket(buffer, buffer.length, add, 6789);

socket.send(packet);

area.setText("");

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6103

socket.close();

}

catch(IOException io){}

}

}

///

///////////////

// voice Classes

// first function called by main

public void captureAudio() {

try {

//print audio devices informatioin

Mixer.Info[] mixerInfo =

AudioSystem.getMixerInfo();

System.out.println("Available mixers:");

for (int cnt = 0; cnt < mixerInfo.length; cnt++)

{System.out.println(mixerInfo[cnt].getName());

}

// get audio from mic X

audioFormat = getAudioFormat();

DataLine.Info dataLineInfo = new

DataLine.Info(TargetDataLine.class, audioFormat);

Mixer mixer =

AudioSystem.getMixer(mixerInfo[3]);

targetDataLine = (TargetDataLine)

mixer.getLine(dataLineInfo);

targetDataLine.open(audioFormat);

targetDataLine.start();

// call thread to send audio

Thread captureThread = new CaptureThread();

captureThread.start();

// send audio to speaker X

DataLine.Info dataLineInfo1 = new DataLine.Info(SourceDataLine.class, audioFormat);

sourceDataLine = (SourceDataLine)

AudioSystem.getLine(dataLineInfo1);

sourceDataLine.open(audioFormat);

sourceDataLine.start();

// call thread to recive audio

Thread playThread = new PlayThread();

playThread.start();

} catch (Exception e) {

System.out.println(e);

System.exit(0);}

}

// sending audio to server

class CaptureThread extends Thread {

byte tempBuffer[] = new byte[1024];

public void run() {

try {

DatagramSocket client_socket = new DatagramSocket();

Maha Sabri Altemem- Voice Chat Application Using Socket Programming

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 5 / August 2014

6104

InetAddress IPAddress =InetAddress.getByName(area3.getText());

while (true) {

int cnt =targetDataLine.read(tempBuffer, 0,tempBuffer.length);

DatagramPacket send_packet = new

DatagramPacket(tempBuffer, tempBuffer.length,

IPAddress,Integer.valueOf(area4.getText()));

client_socket.send(send_packet);

}

} catch (Exception e) {System.out.println(e);

System.exit(0);}

}

}

// coding and format audio

private AudioFormat getAudioFormat() {

float sampleRate = 8000.0F;

int sampleSizeInBits = 16;

int channels = 1;

boolean signed = true;

boolean bigEndian = false;

return new AudioFormat(sampleRate,

sampleSizeInBits, channels, signed, bigEndian);

}

// recieving audio from server and play it

class PlayThread extends Thread {

byte tempBuffer[] = new byte[1024];

public void run() {

try {

DatagramSocket server_socket = new

DatagramSocket(Integer.valueOf(area5.getText()));

while (true) {

DatagramPacket receive_packet = new DatagramPacket(tempBuffer,

tempBuffer.length);

server_socket.receive(receive_packet);

sourceDataLine.write(receive_packet.getData(), 0,tempBuffer.length);

}

} catch (IOException e) {e.printStackTrace();}}}

}

