

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Construction of A Homogeneous Factorization of the Hamming Graph $H_1(n,q)$ Using the Imprimitive Action of $N \le S_q$ on the Arc Set of The Complete Graph K_q

AUREA Z. ROSAL Department of Mathematics College of Science Polytechnic University of the Philippines Sta. Mesa, Manila, Philippines

Abstract:

If $\Gamma = (V(\Gamma), A(\Gamma))$ is a digraph with vertex set $V(\Gamma)$ and arc set $A(\Gamma)$, then a homogeneous factorization of Γ of index n is the 4 – tuple $(M, G, V(\Gamma), P)$ such that

- 1. $P = \{P_1, \dots, P_n\}$ is a partition of $A(\Gamma)$.
- 2. $G \leq Aut(\Gamma)$ acting transitively on P.
- 3. *M* is the kernel of the action of *G* and is transitive on $V(\Gamma)$.

In this paper, it will be shown that there exists a unique homogeneous factorization $(M, G, V(\Gamma), P)$ of index n where $\Gamma = H_1(n,q) = (K_q)^n$, using the imprimtive action of $N \leq S_q$ on $A(K_q)$. This factorization satisfies the following:

- 1. $M = N^n$
- 2. $G = M \times T$, where T is an abelian subgroup of S_n acting regularly on $\Omega = \{1, 2, ..., n\}$.
- 3. $P = \{P_1, ..., P_n\}$, such that
 - a. $P_j = \bigcup_{i=1}^r P_{ij}, \ 1 \le j \le n$ b. $P_{ij} = \{((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n)) \mid (u_j, v_j) \in B_i\}$ where $((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n)) \in A((K_a)^n)$

and $B = \{B_1, ..., B_r\}$ is a system of imprimitive blocks.

Key words: Hamming graph, homogeneous factorization, graph product, permutation group, group action, transitive group action.

I. Introduction

If $G = ((V(\Gamma), A(\Gamma))$ is a digraph with vertex set $V(\Gamma)$ and arc set $A(\Gamma)$, a homogeneous factorization of Γ of index n is a partition $P = \{P_1, ..., P_n\}$ of $A(\Gamma)$ such that there exists a subgroup $G \le Aut(\Gamma)$ that leaves P invariant, permutes the elements of P transitively, and the kernel M of the action is transitive on $V(\Gamma)$. The group G induces an isomorphism between each pair of subgraphs $(V(\Gamma), P_i)$. The symbol $(M, G, V(\Gamma), P)$ is used to mean the homogeneous factorization of Γ when it is necessary to emphasize the underlying groups. The subgraphs $((V(\Gamma), P_i)$ are known as the factors of the homogeneous factorization.

In a paper by [Guidici, *et. al.*, 2004], methods of constructing homogeneous factorization of digraphs were introduced. One of the methods given is that of the homogeneous factorization of index n of a given graph $\Sigma = (\Gamma)^n$, where Γ is a digraph. In the construction, a primitive action of a subgroup $N \leq S_q$ on the arc set of Γ is assumed. The n orbits of N on $A(\Gamma)$ were used in defining the cells of the partitions of $A(\Sigma)$. The above construction served as a motivation in this paper. In this paper, we take $\Gamma = K_q$. Specifically, we want to answer the following questions:

Is it possible to construct a homogeneous factorization of $(K_q)^n$ of some index k using the imprimitive action of a subgroup of S_n ?

II. Theoretical Necessities

Knowledge of elementary graph theory and permutation groups shall be assumed in this paper. However, some definitions will still be given in order to better understand this study.

2.1. Graph Theoretic Necessities

A complete graph K_q is a graph with q vertices such that each pair of distinct vertices are adjacent to each other. The n^{th} *Cartesian* product of any graph Γ with itself is the graph $\Gamma^{\square n}$, whose vertex set $V(\Gamma^{\square n})$ is the Cartesian product of n copies of $V(\Gamma)$. Now, two vertices $(u_1,...,u_j,...,u_n)$ and $(u_1,...,v_j,...,u_n)$ are adjacent iff $(u_i,u_j) \in A(\Gamma)$ for all $u_i, v_j \in V(\Gamma)$. The n^{th} *Cartesian* product of K_q with itself is the graph $H_1(n,q) = (K_q)^n$ known as the Hamming graph. The cube is the Hamming graph $H_1(3,2)$. In general, the cubic graph Q_n is the Hamming graph $H_1(n,2)$.

Figure 1. Complete Graphs K_2 and K_5

Aurea Z. Rosal- Construction of A Homogeneous Factorization of the Hamming Graph $H_I(n,q)$ Using the Imprimitive Action of $N \leq S_q$ on the Arc Set of The Complete Graph K_q

In this study, we shall be concerned with the homogeneous factorization of the Hamming graph $H_1(n,q)$ for $q \ge 3$.

Two graphs are Γ_1 and Γ_2 are *isomorphic* if there exists a bijection $\phi: V(\Gamma_1) \rightarrow V(\Gamma_2)$ such that $(u, v) \in A(\Gamma_1)$ iff $(\phi(u), \phi(v)) \in A(\Gamma_2)$. A *graph automorphism* or simply an *automorphism* is an isomorphism of a graph with itself. The set of all automorphisms of Γ form a group under function

Figure 2 The Hamming Graphs H₁(2,2) and H₁(3,2)

composition. This is known as the automorphism group of Γ and is denoted by $Aut(\Gamma)$. For the complete graph K_q . $Aut(K_q) = S_q$ [Biggs, 1974].

2.2. Concepts from Permutation Group Theory

A permutation group G on a non empty set Ω is a subgroup of $Sym(\Omega)$. The image of the action of G on Ω is a permutation group, called the permutation group *induced* on Ω by G. Also, Ω is known as a *G*-space.

The *kernel* of the action is the set $M = \{x \mid \alpha^x = \alpha, \forall \alpha \in \Omega\}$. When the kernel contains only the identity element, then we say that the action is *faithful*.

Example 2.2.1. Every subgroup G of $Sym(\Omega)$ acts naturally on Ω where α^{g} refers to the image of α under the permutation $g \in G$.

Example 2.2.2. A natural action of S_q on $V(K_q)$ is given by $(u_i)^g = u_{i^g}$, for $u_i \in V(K_q)$, $g \in S_q$ and i^g is the image of *i* under the permutation *g*.

If Ω is a *G*-space, then the orbit of $\alpha \in \Omega$ under *G* is the set $\alpha^{G} = \{\alpha^{x} \mid x \in G\}$, while the stabilizer of α is the set $G_{\alpha} = \{x \in G \mid \alpha^{x} = \alpha\}$.

If for all $\alpha \in \Omega$, $\alpha^G = \Omega$, then we say that the action of *G* is *transitive*. Consequently, if α and β are in Ω , then there exists a $g \in G$ such that $\alpha^g = \beta$. A transitive action that is both transitive and faithful is called *regular*.

Let Ω be a G – space, and $\phi \neq \Delta \subseteq \Omega$, such that $\Delta^x := \{\delta^x \mid \delta \in \Delta\}$. If G is transitive on Ω , then Δ is a block of Ω for G if either $\Delta^x = \Delta$ or $\Delta^x \cap \Delta = \phi$. Ω and $\{\beta\}$ are trivial blocks of Ω respectively, for any $\beta \in \Omega$. Any other blocks are known as *nontrivial* blocks. The action of G on Ω is primitive if it has no nontrivial blocks on Ω . Otherwise, we say that the action is *imprimitive*.

If Δ is a block of Ω , then the set $\mathscr{D} = \{\Delta^g \mid g \in G\}$ is a system of blocks containing Δ .

A group $N \in Aut(\Gamma)$ is said to be *arc transitive* on Γ iff *N* acts transitively on $A(\Gamma)$.

The following Lemma was proven in [Rosal, 2004]. This Lemma would be most useful in our construction.

Lemma 2.2.1. There exists a subgroup of S_q acting imprimitively on the arc set $A(K_q)$ of K_q , for $q \ge 3$.

Example 2.2.3. For K_3 , let $V(K_3) = \{u_1, u_2, u_3\}$ and $B = \{(u_1, u_2), (u_2, u_1)\} \subseteq A(K_3)$. Then *B* is a nontrivial block of $A(K_3)$. Thus S_3 acts imprimitively on $A(K_3)$.

A group G is said to be *arc transitive* on a graph Γ if it is transitive on $A(\Gamma)$. Consequently, G is *vertex transitive* on Γ , that is, it is transitive on $V(\Gamma)$

III. The Construction

Let $N \leq S_q, q \geq 3$ be imprimitive on $A(K_q)$. Then there exists a nontrivial block B of $A(K_q)$. Let $B = \{B^g \mid g \in N\}$ be a block system. If |B| = r, then $r \geq 2$ and $r \mid B \mid = q(q-1)$. Thus, we may write $B = \{B_1, ..., B_r\}$, where $B_i = B^m$ for some $m \in N$. We now define the following:

$$\begin{split} \Sigma &:= (K_q)^n = H_1(n,q) \\ P_{ij} &:= \{ ((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n)) \\ &| (u_j, v_j) \in B_i \} \end{split}$$

where,

$$((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n)) \in A(\Sigma)$$

$$P_j = \bigcup_{i=1}^r P_{ij}$$

$$P = \{P_1, ..., P_n\}$$

$$\begin{split} &M \coloneqq N^n \\ &G \coloneqq M \times T, \text{ where } T \leq S_n \text{ ,} \\ &T \text{ is abelian and acting regularly on } \\ &\Omega = \{1, 2, \dots n\} \text{ .} \end{split}$$

We use the above sets to construct the needed homogeneous factorization. To start we introduce the following lemmas. Some proofs will be omitted.

Lemma 3.1 P partitions $A(\Sigma)$.

Lemma 3.2. *M* is transitive on $V(\Sigma)$ and fixes $P_i, \forall i = 1, 2, ..., n$, setwise.

Proof: Let $m = (m_1, ..., m_n) \in M$, and let $u = (u_1, ..., u_n) \in V(K_q)$. Then M acts on $V(\Sigma)$ via the map $u^m = (u_1^{m_1}, ..., u_n^{m_n})$.

If $(u_1,...,u_n)$ and $(v_1,...,v_n)$ are in $V(\Sigma)$, then $\forall i \in \Omega$, $\exists g_i \in N$ such that $u_i^{g_i} = v_i$. This is so since *N* is transitive on $V(\Sigma)$. Take $g = (g_1, ..., g_n) \in M$, then $(u_1, ..., u_n)^g = (u_1^{g_1}, ..., u_n^{g_n}) = (v_1, ..., v_n)$. Thus. M is transitive on $V(\Sigma)$. If $((u_1,...,u_i,...,u_n),(u_1,...,v_i,...,u_n)) \in A(\Sigma)$, then $((u_1,...,u_i,...,u_n),(u_1,...,v_i,...,u_n)) \in P_i$ for some $j \in \Omega$. Consequently, there exists a $B_i \in B$ such that $(u_i, v_i) \in B_i$. If, $g = (g_1, ..., g_n)$ is in M then, $((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n))^g =$ $((u_1,...,u_i,...,u_n)^g,(u_1,...,v_i,...,u_n)^g) =$ $((u_1^{g_1}, ..., u_i^{g_j}, ..., u_n^{g_n}), (u_1^{g_1}, ..., v_i^{g_j}, ..., u_n^{g_n}))$. Since each $g_i \in N$, then $u_k^{g_k} \in V(K_a)$. Also, since $(u_i, v_i) \in B_i$, then

Aurea Z. Rosal- Construction of A Homogeneous Factorization of the Hamming Graph $H_I(n,q)$ Using the Imprimitive Action of $N \leq S_q$ on the Arc Set of The Complete Graph K_q

 $(u_{j}, v_{j})^{g_{j}} = (u_{j}^{g_{j}}, v_{j}^{g_{j}}) \in (B_{i})^{g_{j}} = B_{i}$, for some t = 1, ..., r. Hence, $((u_{1}, ..., u_{j}, ..., u_{n}), (u_{1}, ..., v_{j}, ..., u_{n}))^{g} \in P_{ij} \subseteq P_{j}$. Therefore, M fixes P_{i} setwise.

Lemma 3.3. T acts

- 1. naturally on $V(\Sigma)$ via the map $(u_1, ..., u_n)^f = (u_{1f}, ..., u_{nf})$.
- 2. on *M* via the map $(m_1, ..., m_n)^f = (m_{1^f}, ..., m_{n^f})$

for all $(u_1,...,u_n) \in V(\Sigma)$ and $(m_1,...,m_n) \in M$.

The proofs of the above Lemmas are straight-forward and will be left to the readers to do.

Lemma 3. 4. *M* and *T* are subgroups of $Aut(\Sigma)$.

Proof: We have already shown that both M and T permute the elements of $V(\Sigma)$. It suffices to show that they preserve adjacency.

For M, let $(u,v) \in A(\Sigma)$. Then $(u,v) = ((u_1,...,u_j,...,u_n), (u_1,...,v_j,...,u_n))$, where $u_i = v_i$ whenever $i \neq j$, and $u_j \neq v_j$.

If
$$m = (m_1, ..., m_j, ..., m_n)$$
, then $(u, v)^m = ((u_1^{m_1}, ..., u_j^{m_j}, ..., u_n^{m_n}),$
 $(u_1^{m_1}, ..., v_j^{m_j}, ..., u_n^{m_n}))$.

Since $u_j \neq v_j$, then $u_j^{m_j} \neq v_j^{m_j}$ since m_j is a bijection. Thus, $(u,v)^m = (u^m, v^m) \in A(\Sigma)$.

Let $f \in T$, then $(u^f, v^f) = (u, v)^f = ((u_{1^f}, ..., u_{j^f}, u_{n^f}), (u_{1^f}, ..., v_{j^f}, u_{n^f})).$

Since $f \in T$, then $\exists | k \in \Omega$ such that $j = k^f$.

It follows that the k^{th} coordinate of $(u,v)^f$ is $(u_{k^f}, v_{k^f}) = (u_j, v_j) \in A(K_q)$. Hence $(u,v)^f \in A(\Sigma)$. Therefore $M, T \leq Aut(\Sigma)$.

Lemma 3. 5. Let $G = M \times T$. Then G is a group under the binary operation

$$(m, f)(a, b) = (ma^{f^{-1}}, fb)$$

Furthermore, G is a semidirect product of M and T.

Proof: It is easy to prove that G is a group under the given binary operation. Thus the proof for this shall be omitted. To prove that G is a semi-direct product of M and T, we have to show T normalizes M and that $M \cap T = \{1\}$, where 1 is the identity in G. We first define the following sets.

Let

 $M^* = \{(m,1) \mid m \in M\}$ and $T^* = \{(1, f) \mid f \in T\}$ where 1 is the identity permutation.

Clearly, M^* and T^* are subgroups of G and that $M^* \cong M$ and $T^* \cong T$. Also, $M^* \cap T^* = \{1\}$, where 1 = (1,1). Consequently, $M \cap T = \{1\}$

Now, T^* acts on M^* by conjugation: $(m,1)^{(1,f)} = (1, f)^{-1}(m,1)(1, f) = (m^f, 1)$

Consequently, T^* normalizes M^* . Since $T^* \cong T$ and $M^* \cong M$, then it follows that T normalizes M. Therefore, G is a semidirect product of M and T.

Notice that if $m \in M$ and $f \in T$, then (m,1)(1, f) = (m, f) and $fm = m^{f^{-1}}f$. Obviously, *G* is not abelian.

Since *M* is normal in $G = M \times T$, then G = MT. For all $m \in M$ and $f \in T$, $fm = f(f^{-1}\hat{m}f) = \hat{m}f$, for some $\hat{m} \in M$. Consequently, G = TM.

The following is a direct consequence of the preceding lemmas.

Lemma 3. 6. $G \leq Aut(\Sigma)$.

It is easy to show that G acts on $V(\Sigma)$ through the map $u^{mf} = (u^f)^{m^f}$, where $m \in M$ and $f \in T$. Also, since $m, f \in G$, then $(u^m)^f = u^{mf}$. Hence, $(u^m)^f = (u^f)^{m^f}$.

We next show that *G* acts on P transitively.

Lemma 3. 7. P is G invariant.

Now, $(u,v)^m \in P_j$ since M fixes P setwise from Lemma 3.3. Specifically, $(u,v)^m \in P_{sj}$ for some $s \in \Omega$.

Next we consider $((u, v)^m)^f$.

$$((u,v)^{m})^{f} = ((u_{1^{m_{1}}},..,u_{j^{m_{j}}},..u_{n^{m_{n}}}),(u_{1^{m_{1}}},..,v_{j^{m_{j}}},..u_{n^{m_{n}}}))$$

Since $f \in T$, just as in the proof of Lemma 3.1.4, there is a unique $k \in \Omega$ such that the k^{th} coordinate of $(u,v)^g = ((u,v)^m)^f = (u_j^{m_j}, v_j^{m_j})$ is in B_s . Thus, $(u,v) \in P_{sk} \subseteq P_k \in P$. Therefore P is G invariant.

Finally, we are going to show that the action of G on P is transitive and the kernel of the action is actually M.

Lemma 3.8. G acts on P transitively via the map $P_j^{g} = P_{j^{f^{-1}}}$, where g = mf. This action is transitive and the kernel of this action is M.

Proof: From Lemma 3.7., it has been shown that P is invariant in G. Now, $(P_j)^1 = P_{j^1} = P_j$. Also, if $g, h \in G$, then g = mf and h = ab, for some $m, a \in M$ and $f, b \in T$. Thus, $((P_j)^g)^h = (P_{j^{f^{-1}}})^h = P_{(j^{f^{-1}})^{b^{-1}}} = P_{j^{(f^{-1}b^{-1})}} = P_{j^{(bf)^{-1}}}$.

On the other hand, $(P_j)^{gh} = (P_j)^{mfab} = (P_j)^{m\hat{a}fb} = (P_j)^{(m\hat{a})fb} = P_{j^{(fb)^{-1}}}$.

Thus, $(P_j)^{gh} = ((P_j)^g)^h$. Also, let $P_j, P_k \in \mathbb{P}$. Since T acts on Ω transitively, then there exists $x \in T$ such that $j^{x^{-1}} = k$. Taking $h = mx \in G$, for any $m \in M$, then $(P_{j^{x^{-1}}}) = P_k$.

Hence G acts on P transitively.

Lastly, we show that M is the kernel of the action. Suppose $K = \{g \in G \mid (P_j)^g = P_j\}$ is the kernel. Clearly, $M \subseteq K$. Let $g = mf \in K$, then $P_j^{g} = P_{j^{f^{-1}}} = P_j$.

Thus, $j^{f^{-1}} = j$. Therefore, f^{-1} or f is in the kernel of the action of T on Ω . Since the action of is faithful, it follows that f = 1. Thus, $g \in M$. Therefore, $K \subseteq M$. Consequently, K = M.

IV. The Main Result

Since $G \leq Aut(\Sigma)$, then every element $g \in G$ is an automorphism of Σ . Hence, for any $i, j \in \Omega$, the subgraphs $(V(\Sigma), P_i)$ and $(V(\Sigma), P_i)$ are isomorphic.

Combining all the Lemmas above, we have now proven the main result of this study.

Proposition 4.1 There exists a homogeneous factorization $(M, G, V(\Sigma), \mathbb{P})$ of index *n* of the Hamming graph $\Sigma := H_1(n, q)$, for $q \ge 3$, satisfying the following:

1.
$$P = \{P_1, ..., P_n\}$$

 $P_j = \bigcup_{i=1}^r P_{ij}$
 $P_{ij} := \{((u_1, ..., u_j, ..., u_n), (u_1, ..., v_j, ..., u_n))$
 $|(u_j, v_j) \in B_i\}$

such that

 $((u_1,...,u_j,...,u_n),(u_1,...,v_j,...,u_n)) \in A(\Sigma)$

2. $G := M \times T$, where

 $M := N^n$ and $T \leq S_n$,

T is abelian and acting regularly on $\Omega = \{1, 2, ...n\}$.

We shall call the above factorization as Type 2.

The name is temporary as further construction procedures are being developed by the author. A Type 1 factorization has been developed and introduced in an ongoing study by the author [Rosal, ongoing].

V. Conclusion

The study of homogeneous factorization of a graph or digraph is a relatively new field. The construction procedure presented in this paper is part of the author's undergoing study on the development of construction procedures for homogeneous factorization of Hamming graphs.

REFERENCES

- Biggs, Norman, (1974). *Algebraic Graph Theory*. Cambridge University Press, Bentley House, 200 Euston Road, London
- Cameron, Peter J., (1999). *Permutation Groups*. The Edinburg Building, Cambridge, UK
- Chartrand, Gary & Linda Lesniak, (1979). Graphs & Digraphs, 2nd Edition. Wadsworth & Brooklyn Cole Advanced Books and Software, Pacific Grove, California
- Cuaresma, Ma, Cristeta, (2004). *Homogeneous Factorization of* Johnson's Graphs. Ph.D. Dissertation (University of the Philippines)
- Dixon, John & Brian Mortimer, (1996). *Permutation Groups*. Springer – Verlag, New York
- Guidici, Michael, Cai Heng Li, Primoz Potočnik & Cheryl E. Praeger, (2004). Homogeneous Factorizations of Graphs and Digraphs. Submitted
- Li, Cai Heng & Cheryl Praeger, (2002). On Partitioning the Orbitals of Transitive Permutation Group. Transactions

of the American Mathematical Society, Vol. 355, Number 2, 627 - 653

- Malik, D. S., John M. Mordeson & M.K. Sen, (1997). Fundamentals of Abstract Algebra. McGraw – Hill Co., Inc., Singapore
- Rosal, Aurea Z., (2005). On the Existence of a Subgroup of Sq Acting Imprimitively on A(Kq) for $q \ge 3$,. Poster Paper, 27th Annual Scientific Meeting, National Academy of Science and Technology
- Wielandt, Helmut, (1964). *Finite Permutation Groups*. Academic Press, 111 Fifth Avenue, New York, NYC