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Abstract: 

If Γ = (V(Γ), A(Γ)) is a digraph with vertex set V(Γ)  and arc set 

A(Γ), then a homogeneous factorization of Γ of index n is the 4 – tuple 

(M, G, V(Γ) , P) such that   

1. P ={P1,…,Pn} is a partition of A(Γ). 

2. G ≤ Aut (Γ) acting transitively on P. 

3. M is the kernel of the action of G and is transitive on 

V(Γ). 

In this paper, it will be shown that there exists a unique 

homogeneous factorization  (M, G, V(Γ) , P) of index n where Γ = 

H1(n,q) = (Kq) n, using the imprimtive action of N ≤  Sq on A(Kq). This 

factorization satisfies the following: 

1. M = Nn 

2. G = M × T, where T is an abelian subgroup of Sn acting 

regularly on Ω = {1, 2, …, n}. 

3. P ={P1,…,Pn}, such that  

a. 
1

,  1
r

j ij

i

P P j n


    

b. 
1 1{(( ,..., ,..., ), ( ,..., ,..., )) | ( , ) }ij j n j n j j iP u u u u v u u v B 

where 

1 1(( ,..., , ..., ), ( ,..., , ..., )) (( ) )
n

j n j n qu u u u v u A K
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and
1{ ,..., }rB B B  is a system of imprimitive 

blocks. 

 

Key words: Hamming graph, homogeneous factorization, graph 

product, permutation group, group action, transitive group action. 

 

 

I. Introduction 

 

If (( ( ), ( ))G V A   is a digraph with vertex set ( )V   and arc 

set ( )A  , a homogeneous factorization of   of index n is a 

partition 1{ ,..., }nP P P of ( )A  such that there exists a 

subgroup ( )G Aut  that leaves P invariant, permutes the 

elements of P transitively, and the kernel M of the action is 

transitive on ( )V  . The group G induces an isomorphism 

between each pair of subgraphs ( ( ), )iV P . The symbol 

( , , ( ), )M G V P  is used to mean the homogeneous factorization 

of  Γ when it is necessary to emphasize the underlying groups. 

The subgraphs (( ( ), )V Pi  are known as the factors of the 

homogeneous factorization.  

In a paper by [Guidici, et. al., 2004], methods of 

constructing homogeneous factorization of digraphs were 

introduced.  One of the methods given is that of the 

homogeneous factorization of index  n of a given graph ( )n   , 

where   is a digraph. In the construction, a primitive action of 

a subgroup 
qN S  on the arc set of   is assumed.  The n  

orbits of N on ( )A   were used in defining the cells of the 

partitions of ( )A  .  The above construction served as a 

motivation in this paper. In this paper, we take  = 
qK . 

Specifically, we want to answer the following questions: 
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Is it possible to construct a homogeneous factorization of ( )n

qK  

of some index k using the imprimitive action of a subgroup of 

nS ? 

 

II. Theoretical Necessities 

 

Knowledge of elementary graph theory and permutation groups 

shall be assumed in this paper. However, some definitions will 

still be given in order to better understand this study. 

  

2.1. Graph Theoretic Necessities 

 

A complete graph 
qK  is a graph with q vertices such that each 

pair of distinct vertices are adjacent to each other. The nth 

Cartesian product of any graph   with itself is the graph 
n , 

whose vertex set  ( )
n

V   is the Cartesian product of n copies of 

( )V  . Now, two vertices 
1( ,..., ,..., )  j nu u u and 

1( ,..., ,..., )j nu v u       

are adjacent iff ( , ) ( )i ju u A   for all , ( )i ju v V  . The nth 

Cartesian product of 
qK  with itself is the graph  1( , ) ( )

n

qH n q K  

known as the Hamming graph.  The cube is the Hamming 

graph 
1(3, 2)H . In general, the cubic graph nQ  is the Hamming 

graph 1( , 2)H n .  

 
 

Figure 1. Complete Graphs K2 and K5 
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In this study, we shall be concerned with the homogeneous 

factorization of the Hamming graph 1( , )H n q for 3q  . 

Two graphs are Γ1 and Γ2 are isomorphic if there exists a 

bijection 
1 2: ( ) ( )V V     such that 

1( , ) ( ) u v A  iff 

2( ( ), ( )) ( )u v A    . A graph automorphism or simply an 

automorphism is an isomorphism of a graph with itself. The set 

of all automorphisms of Γ form a group under function  

 

 

 

 

 

 

 

 

Figure 2 The Hamming Graphs H1(2,2) and H1(3,2) 

 

composition. This is known as the automorphism group of Γ and 

is denoted by Aut(Γ). For the complete graph Kq. ( )q qAut K S  

[Biggs, 1974].  

 

2.2. Concepts from Permutation Group Theory 

 

A permutation group G on a non empty set   is a subgroup of 

( )Sym  . The image of the action of  G on    is a permutation 

group, called the permutation group induced on   by G. Also, 

  is known as a G-space.   

The kernel of the action is the set 

{ | , }
x

M x       .  When the kernel contains only the 

identity element, then we say that the action is faithful. 
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Example 2.2.1. Every subgroup G of ( )Sym   acts naturally on 

  where 
g  refers to the image of   under the permutation 

g G .  

 

Example 2.2.2. A natural action of 
qS  on ( )qV K  is given by 

( ) g

g

i i
u u , for ( )i qu V K , 

qg S and 
gi  is the image of i under 

the permutation g.  

 

If   is a G-space, then the orbit of    under G is the set  

{ | }
G x

x G   , while the stabilizer of   is the set 

{ | }
x

G x G     . 

 

If for all   , 
G

   , then we say that the action of G is 

transitive. Consequently, if  and   are in   , then there exists 

a g G  such that 
g

  . A transitive action that is both 

transitive and faithful is called regular.  

 

Let   be a G – space, and     , such that  

: { | }
x x

    . If  G is transitive on  , then   is a block of   

for G if either 
x

    or 
x

   .    and { }  are trivial 

blocks of   respectively, for any   . Any  other blocks are 

known as nontrivial blocks. The action of G on   is primitive if 

it has no nontrivial blocks on  . Otherwise, we say that the 

action is imprimitive.   

 

If    is a block of  , then the set { | }
g

= g G D  is a system of 

blocks containing  . 

 

A group ( )N Aut   is said to be arc transitive on   iff N acts 

transitively on ( )A  .  
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The following Lemma was proven in [Rosal, 2004]. This Lemma 

would be most useful in our construction. 

 

Lemma 2.2.1.  There exists a subgroup of 
qS acting 

imprimitively on the arc set ( )qA K  of 
qK , for 3q  . 

 

Example 2.2.3. For 
3K , let 3 1 2 3( ) { , , }V K u u u  and 

1 2 2, 1 3{( , ), ( )} ( )B u u u u A K  . Then B is a nontrivial block of 

3( )A K . Thus 
3S  acts imprimitively on 

3( )A K . 

 

A group G is said to be arc transitive on a graph   if it is 

transitive on ( )A  . Consequently,  G is vertex transitive on  , 

that is, it is transitive on ( )V   

 

III. The Construction 

 

Let , 3qN S q   be imprimitive on ( )qA K . Then there exists a 

nontrivial block B of ( )qA K . Let { | }
g

B g N   be a block 

system. If | | r  , then 2r   and  | | ( 1)r B q q  . Thus, we may 

write 1{ ,..., }rB B  , where 
m

iB B  for some m N . We now 

define the following: 

 

          1: ( ) ( , )
n

qK H n q    

         
1 1: {(( ( ))

         | ( , ) }

,..., ,..., ), ,..., ,...,ij j n j n

j j i

P u u

u v B

u u v u


 

where,  

1 1(( ) ( )) ( ),..., ,..., , ,..., ,...,j n j nu u Au u v u    

          
1

r

j iji
P P


  

           1{ ,..., }nP P   
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          :
n

M N  

          : ,  where nG M T T S   ,  

          T is abelian and acting regularly on  

          {1,2,... }n  .         

    

We use the above sets to construct the needed homogeneous 

factorization. To start we introduce the following lemmas. Some 

proofs will be omitted. 

 

Lemma 3.1   partitions ( )A  . 

 

Lemma 3.2. M  is transitive on ( )V   and fixes , 1, 2,...,iP i n  , 

setwise. 

 

Proof: Let 1( ),..., nm m Mm  , and let 
1( ., ) ( ),.. n qu u u V K  .  

Then M acts on ( )V   via the map 1

1( ,..., )nmmm

nu u u .  

 

If 1( ,..., )nu u  and 
1( ,..., )nv v  are in ( )V  , then i  , 

ig N   

such that ig

i iu v . This is so since N is transitive on ( )V  . Take 

1( ,..., )ng g g M  , then 1

1 1 1( ,..., ) ( ,..., ) ( ,..., )nggg

n n nu u u u v v  . 

Thus, M is transitive on ( )V  . If  

1 1(( ) ( )) ( ),..., ,..., , ,..., ,...,j n j nu u Au u v u   , then 

1 1(( ) ( )),..., ,..., , ,..., ,...,j n j n ju u Pu u v u   for some j . 

Consequently, there exists a 
iB   such that ( , )j j iu v B . If, 

1( ,..., )ng g g  is in M  then, 1 1(( ) ( )),..., ,..., , ,..., ,..., g

j n j nu uu u v u   

1 1(( ) ( ) ),..., ,..., , ,..., ,...,g g

j n j nu uu u v u    

1 1

1 1(( ) ( )),..., ,..., , ,..., ,...,j jn n
g gg gg g

j n j nu uu u v u . Since each ig N , 

then ( )kg

k qu V K . Also, since ( , )j j iu v B , then 
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( , ) ( , )j j jg g g

j j j ju v u v  ( ) jg

i tB B  , for some 1,...,t r . Hence, 

1 1(( ) ( )),..., ,..., , ,..., ,..., g

j n j n tj ju u P Pu u v u   . Therefore, M fixes 

jP  setwise.  

□□□ 

 

Lemma 3.3.  T acts  

 

1. naturally on ( )V   via the map 1 1
( ,..., ) ( ,..., )f f

f

n n
u u u u . 

2. on M via the map 1 1
( ,..., ) ( ,..., )f f

f

n n
m m m m  

for all 1( ,..., ) ( )nu u V   and 1( ,..., )nm m M . 

 

The proofs of the above Lemmas are straight-forward and will 

be left to the readers to do. 

 

Lemma 3. 4.  M and T are subgroups of ( )Aut  . 

 

Proof: We have already shown that both M and T permute the 

elements of ( )V  . It suffices to show that they preserve 

adjacency. 

 

For M, let ( , ) ( )u v A  . Then  ( , )u v   

1 1(( ) ( )),..., ,..., , ,..., ,...,j n j nu uu u v u , where 
i iu v  whenever i j , 

and 
j ju v .  

 

If   
1( ,... ..., ),j nm m m m , then 1

1( , ) (( ),..., ,..., ,j n
m mmm

j nu v u u u       

                 1

1( )),..., ,...,j n
m mm

j nu v u .  

Since 
j ju v , then j jm m

j ju v  since 
jm  is a bijection. Thus, 

( , ) ( , ) ( )
m m m

u v u v A   . 
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Let f T , then ( , )f f
u v   ( , )

f
u v = 

1 1
(( ,... , ), ( ,... , )).f f f f f fj n j n

u u u u v u  

Since f T , then | k   such that 
f

j k . 

It follows that the 
th

k  coordinate of ( , )
f

u v  is 

( , ) ( , ) ( )f f j j qk k
u v u v A K  . Hence  ( , ) ( )

f
u v A  . Therefore 

, ( )M T Aut  . 

□□□ 

 

Lemma 3. 5.  Let G M T  . Then G is a group under the 

binary operation        

                       
1

( , )( , ) ( , )
f

m f a b ma fb


  

Furthermore, G  is a semidirect product of M and T. 

 

Proof:  It is easy to prove that G is a group under the given 

binary operation. Thus the proof for this shall be omitted. To 

prove that G is a semi-direct product of M and T, we have to 

show T normalizes M and that {1}M T  , where 1 is the 

identity in G . We first define the following sets. 

 

Let  

{( ,1) | }M m m M

   and {(1, ) | }T f f T


   where 1 is the 

identity permutation.  

 

Clearly, M

 and T


are subgroups of G and that M M


  and 

T T

 . Also, {1}M T

 
  , where 1 (1,1) . Consequently, 

{1}M T   

Now, T

 acts on M


 by conjugation: 

(1, ) 1
( ,1) (1, ) ( ,1)(1, ) ( ,1)

f f
m f m f m


   

Consequently,  T

 normalizes M


. Since T T


  and M M


 , 

then it follows that T normalizes M. Therefore, G is a 

semidirect product of M and T.  

□□□ 
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Notice that if m M  and f T , then ( ,1)(1, ) ( , )m f m f and 

1f
fm m f



 . Obviously, G is not abelian. 

 

Since M is normal in G M T  , then G MT . For all 

andm M f T  , 
1 ˆ ˆ( )fm f f mf mf


  , for some m̂ M . 

Consequently, G TM .  

 

The following is a direct consequence of the preceding lemmas. 

 

Lemma 3. 6. ( )G Aut  . 

 

It is easy to show that G acts on ( )V  through the map 

( )
fmf f m

u u , where m M and f T . Also, since ,m f G , then 

( )
m f mf

u u .Hence, ( ) ( )
fm f f m

u u . 

 

We next show that G acts on  transitively. 

 

Lemma 3. 7.   is G invariant.  

 

Proof:  Let 
jP   and ( , )u v   

1 1(( ,..., ,..., ), ( ,..., ,..., ))j n j n ju u u u u u P . Then for some r , 

( , ) rju v P . Thus, ( , )j j ru v B . Suppose g mf G  , then 

1( ,..., )nm m m M  , im N  for each i  and f T . We now 

compute for ( , )
g

u v . 

 

Now, ( , )
m

ju v P  since M fixes P setwise from Lemma 3.3. 

Specifically, ( , )
m

sju v P  for some s .  

 

Next we consider (( , ) )
m f

u v .  
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1 11 1
(( , ) ) (( ,.., ,.. ), ( ,.., ,.. ))m m m m m mj n j n

m f

n nj j
u v u u u u v u  

Since f T , just as in the proof of Lemma 3.1.4, there is a 

unique k  such that the 
th

k  coordinate of 

( , ) (( , ) ) ( , )j jm mg m f

j ju v u v u v   is in 
sB . Thus, ( , ) sk ku v P P   . 

Therefore   is G invariant. 

□□□ 

 

Finally, we are going to show that the action of G on  is 

transitive and the kernel of the action is actually M. 

 

Lemma 3.8. G acts on  transitively via the map 1f

g

j
j

P P  , 

where g mf . This action is transitive and the kernel of this 

action is M. 

 

Proof: From Lemma 3.7., it has been shown that   is invariant 

in G.  Now, 1

1
( )j jj
P P P  . Also, if ,g h G , then g mf and 

h ab , for some ,m a M and ,f b T . Thus, 

1 1 1 1 1 1( ) ( )( )
(( ) ) ( )

f f b f b bf

g h h

j
j j j j

P P P P P         . 

On the other hand, 1( )

ˆ ˆ( )
( ) ( ) ( ) ( )

fb

gh mfab mafb ma fb

j j j j
j

P P P P P     . 

Thus, ( )
gh

jP = (( ) )
g h

jP . Also, let ,j kP P  . Since T acts on   

transitively, then there exists x T such that 
1x

j k


 . Taking 

h mx G  , for any m M , then 1( )
x k

j
P P  . 

Hence G acts on  P transitively. 

 

Lastly, we show that M is the kernel of the action. Suppose 

{ | ( ) }
g

j jK g G P P    is the kernel. Clearly, M K .  Let 

g mf K  , then 1f

g

j j
j

P P P  . 
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Thus, 
1f

j j


 . Therefore, 
1

f


 or f is in the kernel of the action 

of T on  . Since the action of is faithful, it follows that 1f  . 

Thus, g M . Therefore, K M . Consequently, K M . 

□□□ 

 

IV. The Main Result 

 

Since ( )G Aut  , then every element g G  is an automorphism 

of . Hence, for any ,i j , the subgraphs 

( ( ), ) and ( ( ), )i jV P V P  are isomorphic. 

 

Combining all the Lemmas above, we have now proven the 

main result of this study. 

 

Proposition 4.1 There exists a homogeneous factorization 

( , , ( ), )M G V    of index n of the Hamming graph 1: ( , )H n q  , 

for 3q  , satisfying the following: 

 

1. 1{ ,..., }nP P   

     
1

r

j iji
P P


  

 

    
1 1: {(( ( ))

         | ( , ) }

,..., ,..., ), ,..., ,...,ij j n j n

j j i

P u u

u v B

u u v u


 

such that 

1 1(( ) ( )) ( ),..., ,..., , ,..., ,...,j n j nu u Au u v u    

2.    :  G M T  , where         

       :
n

M N  and  nT S , 

       T is abelian and acting regularly  on    

       {1,2,... }n  .   
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We shall call the above factorization as Type 2 .  

The name is temporary as further construction procedures are 

being developed by the author.  A Type 1 factorization has been 

developed and introduced in an ongoing study by the author 

[Rosal, ongoing].  

 

V. Conclusion 

 

The study of homogeneous factorization of a graph or digraph is 

a relatively new field.  The construction procedure presented in 

this paper is part of the author’s undergoing study on the 

development of construction procedures for homogeneous 

factorization of Hamming graphs.  
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