

5014

ISSN 2286-4822

www.euacademic.org

EUROPEAN ACADEMIC RESEARCH

Vol. III, Issue 4/ July 2015

Impact Factor: 3.4546 (UIF)

DRJI Value: 5.9 (B+)

Recent Development in Operating System

SIKANDER SHAHZAD

Department of Computer Science

Balochistan Agriculture College, Quetta

Pakistan

MUHAMMAD ASLAM NIAZI
Balochistan Agriculture College, Quetta

Pakistan

ASAD KHAN
Balochistan Agriculture College, Quetta

Pakistan

Abstract:

Operating system is a program that provides platform to other

programs to run. There are several operating systems such as

multiprogramming operating system, network operating system, and

distributed operating system. Operating system is a very broad field to

discuss recent development in operating system therefore, it can be

divided into sub areas such as file system, memory management,

process management, and communications management. This

document presents current finding in above mentioned sub areas in

order to discuss recent development in operating system.

Key words: operating system, file system, memory management,

process management, communications management

1. Introduction

The operating system is a program that runs on a computer.

Every computer must have an operating system to run other

programs. Operating systems perform basic tasks, such as

recognizing input from the keyboard, sending output to the

display screen, keeping track of files and directories on the disk,

and controlling peripheral devices such as disk drives and

printers.

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5015

There are different operating systems available in the market

as follows:

1.1 Multiprogramming Operating System1

In multiprogramming operating system, user can run more

than one program at a time. There are different types of

Multiprogramming Operating System, some of them are

discussed below:

1.1.1 Multitasking Operating System

In multitasking operating system, user can perform more than

one computer task at time. This feature is supported by all

major operating systems.

1.1.2 Multiuser Operating System

In multiuser operating system, multiple user can use the same

computer at a time or at different time. Linux, Unix, Windows

Operating Systems are some example of multitasking operating

system.

1.1.3 Multiprocessing Operating System

In multiprocessing operating system, more than one computer

processor can be utilized Linux, Unix, Windows Operating

System are some example of multiprocessing operating system.2

1 http://www.webopedia.com/TERM/O/operating_system.html
2 http://en.wikipedia.org/wiki/Distributed_operating_system

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5016

1.1.4 Real Time Operating System

Real Time Operating System is designed to run applications

with very precise timing and a high degree of reliability. These

operating system are designed for real-time applications. Such

as embedded systems, robots, scientific research equipment.

1.2 Network Operating System

A network operating system (NOS) is designed to support

workstations, personal computers and other network devices

that are connected on a local area network (LAN).

1.3 Distributed Operating System

A distributed operating system is a collection of independent,

networked, communicating, and physically separate computers.

Each individual holds a specific software subset of the global

aggregate operating system.2

2. Recent Development in Operating System Research

Operating system is a very broad field so it must be divided into

sub areas in order to discuss recent development in operating

system research. Figure 1 illustrates the sub areas of operating

system.

Figure 1: Sub Areas of Operating System

2.1 File System

A file system is the method and data structure that an

operating system uses to keep track of files on a disk. NTFS

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5017

(New Technology File System) is a common file system in

Windows Operating System which restores and manages the

important data. It also supports a function of encrypting files,

and so it can provide guaranteed security to the users [5].

We could not straightly examine in windows operating

system if the vital data is deleted therefore, tapping and

analyzing the data of NTFS file system is of great value.Object

oriented idea can be used to design NTFS file parsing system

which parses the most derived binary data that was saved to

disk, getting the completely analysis of the normal files and the

deleted files. After attaining all the data, display these in a tree

structure on friendly interface to the user.

In object oriented idea, all files are viewed as an object

which encapsulated each attribute of the object and different

interface functions for the object. In the file list parsed disk,

project, partition, directory and documents are inherited from

CMyFile shown in figure 2.

Figure 2: Class structure of NTFS file system

According to the figure 2, CDevice and CProject classes are

developed by CMyFile whereas CLogicDisk and CDisk are

created by CDevice.

ClogicDisk shows partition, and Cdisk shows disk.

An object CSource is defined in each CDevice which

further derives two sub classes show in figure 3.

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5018

Figure 3: Resource structure of NTFS file system

In figure 3, CSource class shows the data source which includes

hard disk data source and mirror image data source of this

device. It constructs and gets each file object easily.

CDeviceSource represents hard data source whereas

CFileSource represents document data source.

When the NTFS file is deleted, data area is not cleared

at once. In fact system alters file status byte value from 01 to

00(deleted) in file record. Therefore there is always a chance to

recover NTFS data but we can not see the deleted file at

original position discussed before. If we write data into hard

disk again, these group may be over write then the deleted file

might not be recovered. Data area of deleted file can be defined

as totally recoverable, partial recoverable and totally non-

recoverable shown in figures 4, 5 and 6.

Figure 4: Totally Recoverable Model

Figure 5: Partial Recoverable Model

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5019

Figure 6: Totally Non-Recoverable Model

Thus object-oriented method is used to design and analyze

NTFS file system that inherits relationship and encapsulation

of class to analyze different kinds of data sources. This method

also implements normal file analysis and restores the deleted

file. The result of analysis is displayed in a friendly interface.

2.2 Memory Management

Memory management is responsible for managing the

computer's primary memory. It keeps track of the status of each

memory location, either allocated or free. Memory management

is further divided into sub areas show in figure 7.

Figure 7: Sub areas of memory management

2.2.1 Virtual Memory

Virtual memory is used to compensate RAM (Random access

memory) when computer lacks to run a program or operation. It

is an alternate set of memory addresses which are used by the

programs to store instruction and data.

Energy efficiency has become a serious concern for

embedded system and servers. A number of recent researchers

have discovered that energy savings could be reached if DRAM

is replaced by non-volatile memory [7]. There are various

schemes surveyed by researchers for replacing DRAM with non

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5020

volatile memory, Phase Change Memory (PCM) [2] is one of

them. Such schemes must address the endurance of PCM which

is the major challenge. There are two implementations to

improve endurance of PCM in order to tradeoff time and space

complexity. These are bucket based wear leveling and array

based wear leveling [1].

 Bucket based wear leveling

In bucket based wear leveling two bucket lists are used, free list

and in-use list. Free list manages pages that are free whereas

in-use list manages pages that are in use.

There are N buckets linked in a circular format under

each bucket to apply different distances and ages of page. Once

a page has been written R times, it would be moved to the next

bucket with older pages. Buckets in free list and in use list

communicate with each other. In order to find a free page for

allocation without searching, it can always be obtained from

one of the two base buckets. When both of them get empty, the

bucket lists revolve so that the current base buckets become the

buckets maintaining the oldest pages and the next buckets on

the respective lists become the free and in-use base buckets.

 Array based wear leveling

Array-based wear leveling places older pages far away so that

they are less likely to be used. it uses a pivot pointer and two

global counters for managing PCM physical pages. The pivot

points to a page p around which to partition the array, such

that the pages closer to the pivot (from the bottom of the array)

are farther away and are less likely to be used soon. Once any

page q has been written R times already, we try to find a new

page y from the K pages after the pivot, and then swap the data

of y and q to prevent q from being worn out. The pivot pointer

then shifts ahead so that page y locates behind the pivot and

will not be used quickly.

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5021

To determine if a page is new enough, two global counters m

count and b count are utilized. m count records the minimum

write count. After the pivot pointer rotates back to the

beginning of the array, a new round starts, and b count is set as

m count to fairly accurate the age of the latest pages when the

new round begins.

Thus by integrating both techniques, bucket based wear

leveling, and array based wear leveling into existing design of

virtual memory management energy savings could be achieved.

2.3 Process Management

Process management is an essential part of operating system.

The OS must allocate resources to processes, enable processes

to share and exchange information, protect the resources of

each process from other processes and enable synchronization

among processes. To meet these requirements, the OS must

maintain a data structure for each process, which describes the

state and resource ownership of that process and which enables

the OS to exert control over each process.3

Figure 8 shows the sub areas of process management.

Figure 8: Sub areas of process management

2.3.1 Deadlock

Deadlock is a situation where two or more processes are

waiting for each other to complete before taking place that will

never happen. Let’s say a computing action 'X' is waiting for

3 http://en.wikipedia.org/wiki/Process_management_(computing)

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5022

action 'Y' to complete, while action 'Y' can only execute when 'X'

is completed. Such a state would be called a deadlock.

In operating systems, a deadlock situation is reached

when computer resources required for completing a task are

held by another task that is waiting to execute. The system

thus goes into an indefinite loop resulting into a deadlock.

Deadlocks generally take place between threads in

shared memory concurrent programming as a consequence of

cyclic lock acquisition. When threads wait for a resource of each

other to complete task, they go to state of deadlock. There are a

number of techniques proposed to avoid deadlocks mainly

programming language approaches that aim for static deadlock

avoidance by employing type systems to avoid deadlocks [6].

Another method to prevent deadlock is dynamically avoid

deadlocks directed by information about the order of explicit

lock and unlock operations collected statically by program

analysis [4].

According to the recent research, static analysis tool can be

used to implement multithreaded C programs and then linking

them with a run time system that prevents possible deadlock

[3].

 Deadlock Avoidance Analysis

Deadlock avoidance analysis has two phases. The first phase

performs a field and context sensitive pointer analysis then

continuation effect inference and instrumented program which

is linked with runtime system. The second phase is entirely

dynamic and takes place when the original program requests a

lock. The future lockset of the demanded lock is computed by

utilizing the inserted effects.The lock will be arranged if only

both lock and future lockset are accessible.

A. Static Analysis

In static analysis, abstract syntax tree of program is taken as

input and a call graph is created. The created graph is then

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5023

visited from bottom to up. There are four stages involved in the

analysis of function declaration.

i. Pointer analysis

In this stage, intra procedural pointer analysis is employed

based on symbolic execution in order to formulate an abstract

heap and stack condition at each program point. A mapping for

each expression to a set of abstract location is obtained at the

end of first stage.

ii. Effect inference

In this stage, a standard forward data flow algorithm is run

which computes the effect for each function. This algorithm is

run on control flow graph of function and this graph containing

nodes. Each node is related with an input, current and an

output effect.

 The input effect is formulated by joining effects flowing

from all its front edges.

 The current effect is formulated when a lock or unlock

operation is found denoted by r+ or r-.

 The current effect is formulated when a new reference is

allocated dynamically and bound to the variable.

 The current effect is formulated when a function is

called r(r1.......rn) : r-. r is reference to the function,

(r1.....rn) are the arguments of function and r- is a

reference of the result of function.

 Current effect and input effect are attached in order to

compute output effect. Output effect is visited to every

successor of node until a fixed point is reached.

iii. Loops

In this stage,effects flow from back edges to the input effect of

the same node which must be equivalent to the lock counts.

iv. Effect optimization

In this stage, several optimizations are performed in order to

minimize the repetitions of the identical effect segment in effect

of functions such as computing the common prefix and suffix of

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5024

the effects, decreasing the size of branches and flatting effects

that consist nested join operators.

B. Code Generation

This phase creates a single block of initialization code for the

effect of each function and insert effect index update

instructions before each call and lock operation. Each function

is instrumented with instructions for pushing and popping

effects from the run time stack at function entry and exit points

which forces a constant overhead to function calls. Mapping for

stack and heap points are created at run time which joins an

abstract location to run time address. The inverse mapping is

looked for using the physical address when de-allocation

operation is done and the joining between the abstract heap

location and the physical address is detached from the heap

mapping. That is how analysis is able to deal with locks de-

allocated dynamically.

Thus static analysis tool is used to implement multi-

threaded C programs and then linking them with a run time

system that prevents possible deadlock.

3. Conclusion

Operating system is one of the important components that

every computer must have an operating system to run other

programs. File system management, memory management,

process management and communications management are the

sub areas. NTFS file system is one of the file systems for

storing and managing vital data. Object oriented method is

used to design and analyze NTFS file system which inherits

relationship and encapsulation of class to analyze different

kinds of data sources. Virtual memory sub area of memory

management is used to compensate RAM when computer lacks

to run program or operation. Energy efficiency is a serious

concern for embedded systems and servers. By integrating

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5025

bucket based WL and array based WL techniques into design of

virtual memory management, energy savings is achieved.

Deadlock sub area of process management is a state where

process waits for each other to do their task but will never

happen. There are several methods to avoid deadlocks mainly

using static analysis tool to implement multithreaded C

programs and then joining them with a run time system in

order to prevent deadlock.

REFERENCES

[1] Chi-Hao Chen, Pi-Cheng Hsiu, Tei-Wei Kuo, Chia-Lin Yang,

and C-YM Wang. Age-based pcm wear leveling with nearly zero

search cost. In Design Automation Conference (DAC), 2012 49th

ACM/EDAC/IEEE, pages 453{458. IEEE, 2012.

[2] Alexandre Peixoto Ferreira, Bruce Childers, Rami Melhem,

Daniel Moss_e, and Mazin Yousif. Using pcm in next-

generation embedded space appli- cations. In Real-Time and

Embedded Technology and Applications Sym- posium (RTAS),

2010 16th IEEE, pages 153{162. IEEE, 2010.

[3] Prodromos Gerakios, Nikolaos Papaspyrou, Konstantinos

Sagonas, and Panagiotis Vekris. Dynamic deadlock avoidance

in systems code using statically inferred effects. In Proceedings

of the 6th Workshop on Pro- gramming Languages and

Operating Systems, page 5. ACM, 2011.

[4] Prodromos Gerakios, Nikolaos Papaspyrou, and Kostis

Sagonas. A type and effect system for deadlock avoidance in

low-level languages. In Pro- ceedings of the 7th ACM SIGPLAN

workshop on Types in language design and implementation,

pages 15{28. ACM, 2011.

[5] Zhang Kai, Cheng En, and Gao Qinquan. Analysis and

implementation of ntfs _le system based on computer forensics.

In Education Technology and Computer Science (ETCS), 2010

Sikander Shahzad, Muhammad Aslam Niazi, Asad Khan- Recent Development in

Operating System

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 4 / July 2015

5026

Second International Workshop on, volume 1, pages 325{328,

March 2010.

[6] Vasco T Vasconcelos, Francisco Martins, and Tiago

Cogumbreiro. Type inference for deadlock detection in a

multithreaded polymorphic typed assembly language. arXiv

preprint arXiv:1002.0942, 2010.

[7] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A

durable and energy efficient main memory using phase change

memory technology. In ACM.

