

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

On Artin cokernel of The Group($Q_{2m} \times D_3$) Where m= $2p^h$, such that $h \in Z^+$ and p is prime number

NESIR RASOOL MAHMOOD

Assistant Professor University of Kufa Faculty of Education for Girls Department of Mathematics ZINAH MAKKI KADHIM University of Kufa Faculty of Education for Girls Department of Mathematics

Abstract:

The main purpose of This paper is to find Artin's character table $Ar(Q_{2m} \times D_3)$ when m is even number such that $m = 2p^h$, such that $h \in Z^+$, and p is a prime number ;where Q_{2m} is denoted to Quaternion group of order 4m, time is said to have only one dimension and space to have three dimension ,the mathematical quaternion partakes of both these elements ; in technical language it may be said to be "time plus space", or "space plus time" and in this sense it has, or at least involves a reference to four dimensions, and how the one of time of space the three might in the chain of symbols girdled "- William Rowan Hamilton (Quoted in Robert Percival Graves "Life of sir William Rowan Hamilton" (3 vols., 1882, 1885, 1889)), and D_3 is Dihedral group of order 6. In 1962, C. W. Curits & I. Reiner studied Representation Theory of finite groups.

In 1976, I. M. Isaacs studied Characters Theory of finite groups, In 1982, M. S. Kirdar studied The Factor Group of the Z-Valued class function modulo the group of the Generalized Characters, In1994, H. H. Abass studies The Factor Group of class function over the group of Generalized Characters of D_n and found $\equiv^*(D_n)$, In 1995, N. R. Mahmood studies The Cyclic Decomposition of the factor Group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$, In 2002, K-Sekiguchi studies Extensions and the

Irreducibilies of the Induced Characters of Cyclic P-Group. In 2006, A. S. Abid studies Characters Tabl eof Dihedral Group for Odd number.

Key words: even number, prime number, Quaternion group, and Dihedral group.

Introduction:

Representation Theory is a branch of mathematics that studies abstract algebra structures by Representing their elements as linear transformations of vector spaces, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in items of matrix addition and matrix multiplication ,In which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication, Moreover, representation and character theory provide applications ,no only in other branches of mathematics but also in physics and chemistry.

For a finite group G, the factor group $\overline{\mathbf{R}}(\mathbf{G})/\mathbf{T}(\mathbf{G})$ is called the Artin cokernel of G denoted $\mathbf{AC}(\mathbf{G})$, $\overline{\mathbf{R}}(\mathbf{G})$ denoted the a belian group generated by Z-valued characters of G under the operation of pointwise addition, $\mathbf{T}(\mathbf{G})$ is a subgroup of $\overline{\mathbf{R}}(\mathbf{G})$ which is generated by Artin's characters

Preliminary: [1]:(3,1)

The Generalized Quaternion Group Q_{2m}:

For each positive integer $m\geq 2$, the generalized Quaternion Group Q_{2m} of order 4m with two generators x and y satisfies $Q_{2m} = \{x^h \ y^k, 0 \leq h \leq_{2m} 1, k=0, 1\}$

Which has the following properties ${x^{2m}=y^4=I, yx^my^{-1}=x^{-m}}$.

Definition :[2](3,2)

Let G be a finite group, all the characters of group G induced from a principal character of cyclic subgroup of G are called Artin characters of G.

Artin characters of the finite group can be displayed in a table called Artin characters table of **G** which is denoted by **Ar(G)**; The first row is Γ -conjugate classes ; The second row is The number of elements in each conjugate class, The third row is the size of the centralized $|C_G(cl_a)|$ and other rows contains the values of Artin characters .

The general form of Artin characters table of $\mathbf{C}\mathbf{p^s}$

When p is a prime number and s is a positive integer number is given by:-

$Ar(Cp^{s})=$

Γ -classes	[1]	$[x^{ps-1}]$	$[x^{ps-2}]$	 [x]
$ cl_a $	1	1	1	 1
$ cp^{s}(cl_{a}) $	p^s	ps	p^s	 p^s
Φ_l	p^s	0	0	 0
$arPhi_2$	P^{s-1}	P^{s-1}	0	 0
:	:	:	:	 :
Φ_{s}	p	p	p	 0
Φ_{s+1}	1	1	1	 1

Table (1)

Corollary:[5]:(3,4)

Let $n=P_1a^1.P_2a^2...P_na^n$ where $g.c.d(P_i,P_j)=1$ if $i\neq j$ and P_i are a prime numbers, and a_i any positive integer for all $1\leq i\leq n$ Then : $Ar(C_m)=Ar(Cp_1a^1)\otimes Ar(Cp_2a^2)...\otimes Ar(Cp_na^n)$ such that

$Ar(Cp^1)=$

Γ-class	[1]	[x]
$ cl_a $	1	1
$ cp(cl_a) $	р	р
Φ_l	р	0
Φ_2	1	1
	Table(9)	

```
Table(2)
```

Where $\operatorname{Ar}(C_{2m})$, m=2.p is $\operatorname{Ar}(C_{2.2p})=\operatorname{Ar}(C_{2^2}p)=$ $\operatorname{Ar}(C_{2^2})\otimes\operatorname{Ar}(p^1)$.

Proposition:[4]:(3,5)

The number of all distinct Artin characters on group G is equal to the number of Γ -classes on G .Furthermore, Artin characters are constant on each Γ -classes .

The main results:

Theorem:(4,1):-

The Artin's character table of the group $(\mathbf{Q}_{2,2}\mathbf{p}^{h} \times \mathbf{D}_{3})$ where $m=2p^{h}$ such that $h \in Z^{+}$ and p is prime number, it is given as follows:

$Ar(Q_{2.2p}h \times D_3) =$

The Artin's character table of group $(Q_{2.2p}h \times D_3)$:

	Γ-classe	es of Q _{2.2p}	×{1}								
Γ -classes	[I,1] [xy,1]	$[x^{2^{h}_{p}}, 1]$	[<i>x</i> ^{<i>p</i>^{<i>h</i>},1]}	[<i>x</i> ^{4<i>p</i>} ,1]	[<i>x</i> ^{2<i>p</i>} ,	1] [x ^p ,1]	[x ⁴ ,1]	[<i>x</i> ² ,1]	[x,1]	[y,1]	
CL _a	1	1	2	2	2	2	2	2	2	$2(2_{p}^{h})$	2(2 ^{<i>h</i>} _{<i>p</i>})
CQ _{2.2p} ^h ×D ₃ (CL _a)	24(2 ^{<i>h</i>} _{<i>p</i>})	$24(2_p^h)$	$12(2_{p}^{h})$	$12(2_p^h)$	$12(2_{p}^{h})$	$12(2_p^h)$	$12(2_p^h)$	$12(2_p^h)$	12(^h 2)) 24	24
Φ(Ι,1)											
Φ(2,1)											
Φ(3,1)					6Ar	(Q _{2.2p} ^h)					
Φ(4,1)											
Φ(5,1)											
Φ(6,1)											
Φ(7,1)											
Φ(8,1)											
Φ(9,1)											
Φ(10,1)											
Φ(11,1)											

Nesir Rasool Mahmood, Zinah Makki Kadhim- On Artin cokernel of The $Group(Q_{2m} \times D_3)$ Where $m=2p^h$, such that $h \in Z^+$ and p is prime number

$\Gamma\text{-classes of } Q_{2.2p}h \times \{ \ 1 \ \}$
$[I,1] [x^{2^{h}_{p}},1] [x^{p^{h}},1] [x^{4^{p}},1] [x^{2^{p}},1] [x^{p},1] [x^{4},1] [x^{2},1] [x,1] [y,1] [xy,1]$
1 1 2 2 2 2 2 2 2 2
$\frac{24(2_p^h)}{24} \frac{24(2_p^h)}{24(2_p^h)} \frac{12(2_p^h)}{12(2_p^h)} 12(2_p^h)$
24
$2\mathrm{Ar}(\mathbf{Q}_{2.2\mathrm{p}^{\mathbf{h}}})$

	Γ-classe	s of Q _{2.2p} ^h	×{1}								
Γ -classes	[I,1] [xy,1]	$[x^{2_p^h}, 1]$	[<i>x</i> ^{<i>p</i>^{<i>h</i>},1]}	[x ^{4p} ,1]] [x ^{2p} ,1] [x ^p ,1]	[<i>x</i> ⁴ ,1]	[<i>x</i> ² ,1]	[x,1]	[y,1]	
CL _a	1	1	2	2	2	2	2	2	2	$2(2_{p}^{h})$	$2(2_{p}^{h})$
$ CQ_{2.2p}^{h} \times D_{3}(CL_{a}) $	24(2 ^{<i>h</i>} _{<i>p</i>})	24(2 ^{<i>h</i>} _{<i>p</i>})	$12(2_p^h)$	$12(2_p^h)$	12(2 ^{<i>h</i>} _{<i>p</i>})	$12(2_p^h)$	$12(2_p^h)$	$12(2_p^h)$	12(²	p) 24	24
Ф(I,3)											
Φ(2,3)											
Φ(3,3)											
Φ(4,3)											
Φ(5,3)					3Ar(Q _{2.2}	^{, h})					
Φ(6,3)											
Φ(7,3)											
Φ(8,3)											
Φ(9,3)											
Φ(10,3)											
Φ(11,3)											

	Γ-cla	asses of	Q _{2.2p} ^h ×	{r}							
Γ -classes	[l,r]	$[x^{2_p^h},r]$	[<i>x</i> ^{<i>p</i>^{<i>h</i>},r}] [x ^{4p} ,r]	[<i>x</i> ^{2<i>p</i>} ,r]	[<i>x^p</i> ,r] [<i>x</i>	⁴ ,r]	[<i>x</i> ² ,r]	[x,r]	[y,r]	[xy,r]
CL _a	2	2	4	4	4	4	4	4	4	$4(2_{p}^{h})$	$4(2_{p}^{h})$
CQ _{2.2 p} ×D ₃ (CL _a)	12 (2	^h _p) 12	(2 ^{<i>h</i>} _{<i>p</i>}) 6($(2_p^h) = 6(2_p^h)$	$6(2_p^h)$	6(2 ^{<i>h</i>} _{<i>p</i>})	6(2	^h p) 6(2	2_p^h) 6($\frac{h}{2}$	2p) 2	4 24
Φ(I,1)											
Φ(2,1)											
Φ(3,1)											
Φ(4,1)											
Φ(5,1)						0					
Φ(6,1)											
Φ(7,1)											
Φ(8,1)											
Φ(9,1)											
Φ(10,1)											
Φ(11,1)											

[l,r] 2 12 (2 ^h _p	$[x^{2^{h}_{p}}, r]$ 2) 12(2^{h}_{p})	4	4	4	[<i>x^p</i> ,r] 4	[x ⁴ ,r] 4	[x ² ,r]] [x,ı 4	r] [y,ı 4(2 ^h _p		[xy,r] 4(2 ^h _p)
					4	4	4	4	4(2 ^h	5)	$4(2_{p}^{h})$
12 (2 ^h _p) 12(2 ^h _p) 6(2 ^h _p)	6(2 ^h _n)	ciphy							r
			· p·	$6(2_{p}^{h})$	6(2 ^h)) 6	(2_{p}^{h})	$6(2_{p}^{h})$	$6(^{h}_{2}p)$	24	24
				2Ar	Q _{2.2p} ^h)						
					2Ar(2Ar(Q _{2.2p} ^h)	2Ar(Q _{2.2p} ^h)	2Ar(Q _{2.2p} ^h)	2Ar(Q _{22p} ^h)	2Ar(Q _{2.2p} ^h)	2Ar(Q _{2.2p} ^h)

	Γ -classes of $Q_{2.2p}^{h} \times \{ r \}$
Γ -classes	$[\mathbf{l},\mathbf{r}] = [x^{2^{h}_{p}}, \mathbf{r}] = [x^{p^{h}}, \mathbf{r}] = [x^{4p}, \mathbf{r}] = [x^{2p}, \mathbf{r}] = [x^{p}, \mathbf{r}] = [x^{4}, \mathbf{r}] = [x^{2}, \mathbf{r}] = [\mathbf{x}, \mathbf{r}] = [\mathbf{y}, \mathbf{r}] = [\mathbf{x}, \mathbf{y}, \mathbf{r}]$
CL _a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ CQ_{2.2}^{h} \times D_{3}(CL_{a}) $	$12 (2^{h}_{p}) 12 (2^{h}_{p}) 6 (2^{h}_{p}) 24 24$
Φ(I,3)	
Φ(2,3)	
Φ(3,3)	0
Φ(4,3)	
Φ(5,3)	
Φ(6,3)	
Φ(7,3)	
Φ(8,3)	
Φ(9,3)	
Φ(10,3)	
Φ(11,3)	

	Γ-clas	ses of Q _{2.2}	p ^h × {s }								
Γ -classes	[I,s]	$[x^{2_p^h},s]$	[<i>x</i> ^{<i>p</i>^{<i>h</i>},s]}	[<i>x</i> ^{4<i>p</i>} ,s]	[<i>x</i> ^{2<i>p</i>} ,s]	[<i>x^p</i> ,s]	[<i>x</i> ⁴ ,s]	[<i>x</i> ² ,s]	[x,s]	[y,s]	[xy,s]
CL _a	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	$6(2_{p}^{h})$
$ CQ_{2,2}^{h} \times D_{3}(CL_{a}) $	8 (2 ^h _p) 8(2 ^{<i>h</i>} _{<i>p</i>})	$4(2_{p}^{h})$	$4(2_{p}^{h})$	$4(2_{p}^{h})$	4()	2 ^{<i>h</i>} _{<i>p</i>}) 4(2_p^h) 4(2)	(2^{h}_{p}) 4(^h ₂ p) 8	8
Φ(Ι,1)											
Φ(2,1)											
Φ(3,1)											
Φ(4,1)						0					
Φ(5,1)											
Φ(6,1)											
Φ(7,1)											
Φ(8,1)											
Φ(9,1)											
Φ(10,1)											
Φ(11,1)											

					Г-с	asses of	$Q_{2.2p}^{h} \times $	{s}			
Γ-classes	[l,s] [xy,s]	[x	$[2^{2^{h}_{p}}, s]$	[<i>x</i> ^{<i>p</i>^{<i>h</i>},s]}	[x ^{4p} ,s]	[<i>x</i> ^{2<i>p</i>} ,s]	[<i>x^p</i> ,s]	[<i>x</i> ⁴ ,s]	[<i>x</i> ² ,s]	[x,s]	[y,s]
CL _a	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	$6(2_{p}^{h})$
CQ _{2.2} ^h ×D ₃ (CL _a)	8 (2 ^h _p) 8	(2_p^h)	$4(2_{p}^{h})$	$4(2_{p}^{h})$	$4(2_{p}^{h})$	4(2 ^{<i>h</i>} _{<i>p</i>})	$4(2_p^h)$	$4(2_{p}^{h})$	$4({}_{2}^{h}p)$	8 8
Φ(I,2)											
Φ(2,2)											
Φ(3,2)											
Φ(4,2)											
Φ(5,2)											
Φ(6,2)											
Φ(7,2)											
Φ(8,2)						0					
Φ(9,2)											
Φ(10,2)											
Φ(11,2)											

					Γ -classes	of Q _{2.2p} ^h >	< {s}				
Γ -classes	[l,s]	$[x^{2_p^h},s]$	$[x^{p^h},s]$	$[x^{4p},s]$	$[x^{2p},s]$	$[x^p,s]$ $[x$	⁴ ,s]	x ² ,s]	[x,s]	[y,s]	[xy,s]
CL _a	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	6(2 ^h _p)
CQ _{2.2 p} ×D ₃ (CL _a)	8 (2 ^h _p)	8(2 ^h _p)	$4(2_{p}^{h})$	$4(2_{p}^{h})$	$4(2_{p}^{h})$	$4(2_{p}^{h})$	$4(2_{p}^{h})$	4(2 ^h _p)) 4(^h ₂	p) 8	8
Φ(I,3)											
Φ(2,3)											
Φ(3,3)											
Φ(4,3)											
Φ(5,3)						(o h)					
Φ(6,3)					Ar	(Q _{2.2p} ^h)					
Φ(7,3)											
Φ(8,3)											
Φ(9,3)											
Φ(10,3)											
Φ(11,3)											

Table(3)

<u>Proof:</u> Let g_{ij} =(qi,dj); $qi \in Q_{2.2p^h}$, $dj \in D_3$ Case (I):-

Consider the group $G=(Q_{2,2p}h\times D_3)$ and if H is a cyclic subgroup of $(Q_{2,2p}h\times \{I\})$ then $H=\langle (q,1)\rangle$ and Φ the principle character of Hand Φ_j Artin's characters of $Q_{2,2p}h$, $1\leq j\leq i+2$, The cyclic subgroup of $Q_{2,2h_p}$ which are $\{\langle I \rangle\}, \{\langle x^{2h_p} \rangle\}, \{\langle x^{p^h} \rangle\}, \{\langle x^{4p} \rangle\}, \{\langle x^{2p} \rangle\}, \{\langle x^p \rangle\}, \{\langle x^p \rangle\}, \{\langle x^q \rangle\}, \{\langle x^2 \rangle\}, \{\langle x^p \rangle\}, \{\langle x^p \rangle\}, \{\langle x^p \rangle\}, \{\langle x^q \rangle\}, \{\langle x^$

and cyclic subgroup of D_3 which are $\{\langle d \rangle\}, \{\langle r \rangle\}, \{\langle s \rangle\}, by using theorem:$

$$\begin{split} & \varphi_{j}(g) = \begin{cases} \frac{|CG(g)|}{|CH(g)|} \sum_{i=1}^{n} \emptyset(hi) & \text{if } hi \in H \cap cl(g) \\ & \text{if } H \cap cl(g) = \emptyset \end{cases} \\ & H = \langle q, 1 \rangle \cdot \\ & H = \langle q, 1 \rangle \cdot \\ & I: - H_{11} = \langle (I, 1) \rangle & \text{if } g = (I, 1) \text{ then } \emptyset_{11}(g) = \frac{|CG(g)|}{|CH(g)|} \emptyset (g) = \frac{24.2p^{h}}{|CH(g)|} \\ & .1 = \frac{6|CQ2m(1)|}{|C < x > (1)|} \cdot 1 = 6.\emptyset_{j}(1) \\ & \text{since } H \cap cl(I, 1) = (I, 1) \\ & 2: - H_{21} = \langle (x^{2\frac{h}{p}}, 1) \rangle ; (a) \text{if } g = (I, 1) \text{then } \emptyset_{21}(g) = \frac{|CG(g)|}{|CH(g)|} \emptyset(g) = \frac{24.2p^{h}}{|CH(g)|} \\ & .1 = \frac{6|CQ2m(1)|}{|C < x > (x^{2\frac{h}{p}})|} \cdot 1 = 6\emptyset_{j}(I) \\ & (b) \text{if } g = (x^{2\frac{h}{p}}, 1) \text{ then } \emptyset_{21}(g) = \frac{|CG(g)|}{|CH(g)|} \cdot \emptyset(g) = \frac{24.2p^{h}}{|C + (g)|} \cdot 1 = \frac{24.2p^{h}}{|C < x > (x^{2\frac{h}{p}})|} \\ & .1 = \frac{6|CQ2m(x^{2\frac{h}{p}})|}{|C < x > (x^{2\frac{h}{p}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & \text{since } H \cap cl(x^{2\frac{h}{p}}) = (I, 1), (x^{2\frac{h}{p}}, 1) \text{ otherwise} = 0. \\ & 3: - H_{31} = \langle (x^{p^{h}}, 1) \rangle_{;}(a) \text{ if } g = (I, 1) \text{ then } \emptyset_{31}(g) = \frac{|CG(g)|}{|CH(g)|} \emptyset(g) \\ & = \frac{24.2p^{h}}{|C < x > (x^{p^{h}})|} \cdot 1 = \frac{6|CQ2m(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(I) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(2m)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h}})|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (b) \text{ if } g = (x^{2\frac{h}{p}, 1) = \frac{|CG(g)|}{|C < x > (x^{p^{h})}|} \cdot 1 = 6.\emptyset_{j}(x^{2\frac{h}{p}}) \\ & (c + x)(x^{2\frac{h}{p}}) \\$$

$$\begin{aligned} &(c) if \qquad g=(x^{p^{h}}, I) \qquad then \\ & \phi_{31}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \\ & \phi(g^{-1}) = \frac{12.2p^{h}}{|C(x^{p^{h}})|}(1+I) = \frac{3|CQ2m(q)|}{|C(x^{p^{h}})|}; 2=6, \phi_{j}(x^{p^{h}}) \\ & Since \ H\cap \ cl(x^{p^{h}}) = \left\{ (I, 1), (x^{2^{h}}, 1), (x^{p^{h}}, 1) \right\} \quad otherwise=0. \\ & 4:-H_{41} = < (x^{4p}, 1) > ; \quad (a) \qquad if \qquad g=(I, I) \qquad then \\ & \phi_{41}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{|C(x^{4p})|}; 1 = \frac{6|CQ2m(q)|}{|C(x^{4p})|}, I = 6, \phi_{j}(I). \\ & (b) \qquad if \qquad g=(x^{4p}, I) \qquad then \qquad \phi_{41}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ & \phi(g^{-1})) = \frac{12.2p^{h}}{|C(x^{4p})|}; (I+I) = \frac{3|CQ2m(q)|}{|C(x^{4p})|}; 2=6, \phi_{j}(x^{4p}) \\ & Since \ H\cap \ cl(x^{4p}) = \{(I, 1), (x^{4p}, 1)\}. \qquad Otherwise=0 \quad and \quad \phi(g) = \\ & \phi(g^{-1}) = I. \\ & 5:-H_{51} = < (x^{2p}, 1) > ; (a) \qquad if \qquad g=(I, I) \qquad then \\ & \phi_{51}(g) = \frac{|CG(g)|}{|C+x|(g)|} \phi(g) = \frac{24.2p^{h}}{|C(x^{2p})|}; I = \frac{6|CQ2m(q)|}{|C(x^{2p})|}; I = 6\phi_{j}(I) \\ & (b) \quad if \qquad g=(x^{2^{h}}, 1) \qquad then \qquad \phi_{51}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{|C(x^{2p})|}; I = \frac{6|CQ2m(q)|}{|C(x^{2p})|}; I = 6\phi_{j}(I) \\ & (c) \qquad if \qquad g=(x^{2^{h}}, 1) \qquad then \ \phi_{51}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) + (g^{-1})) = \frac{12.2p^{h}}{|C(x^{2p})|} (I+I) = \frac{3|CQ2m(q)|}{|C(x^{2p})|}; 2=6\phi_{j}(x^{4p}) \\ & (d) \ if \ g=(x^{2p}, 1) \ then \ \phi_{51}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + (g^{-1})) = \frac{12.2p^{h}}{|C(x^{2p})|} (I+I) = \frac{3|CQ2m(q)|}{|C(x^{2p})|}; 2=6\phi_{j}(x^{4p}) \\ & (d) \ if \ g=(x^{2p}, 1) \ then \ \phi_{51}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + (g^{-1})) = \frac{12.2p^{h}}{|C(x^{2p})|} (I+I) = \frac{3|CQ2m(q)|}{|C(x^{2p})|}; 2=6\phi_{j}(x^{4p}) \\ & (d) \ if \ g=(x^{2p}, 1) \ then \ \phi_{51}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + (g^{-1})) = \frac{12.2p^{h}}{|C(x^{2p})|} (I+I) = \frac{3|CQ2m(q)|}{|C(x^{2p})|}; 2=6\phi_{j}(x^{4p}) \\ & (b) \ if \ g=(x^{2p}, 1) \ then \ \phi_{61}(g) = \frac{|CG(g)|}{|C(x^{2p})|}; I = \frac{|CG(g)|}{|C(x^{2p})|} (f^{2p}) = \frac{|CG(g)|}{|C(x^{2p})|}; I = \frac{|CG(g)|}{|C(x^{2p})|}; I = \frac{|CG(g)|}{|C(x^{2p})|}; I = \frac{|CG(g)|}{|C(x^{2p})|};$$

$$\phi_{g_{l}}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{12.2p^{h}}{|C < x > (x)|} (1+1) = \frac{3|CQ2m(q)|}{|C < x > (x)|} \cdot 2 = 6 \phi_{j}(x)$$

Since

$$\begin{split} H &\supset cl(x) = \\ \left\{ (l,1), \left(x^{2^{h}_{p}}, 1 \right), \left(x^{p^{h}}, 1 \right), \left(x^{4^{p}}, 1 \right), \left(x^{2^{p}}, 1 \right), \left(x^{p}, 1 \right), \left(x^{4}, 1 \right), \left(x^{2}, 1 \right), \left(x, 1 \right) \right\} \\ Otherwise = 0.and \emptyset(g) = \emptyset(g^{-1}) \end{split}$$

$$10:-H_{101} = \langle (y,1) \rangle ; (a) \ if \ g = (I,1) \ then \phi_{101}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{4}.1 = 6$$

$$\phi_{i+1}(I).$$

(b) if
$$g=(y^2, 1) = (x^{2p}, 1)$$
 then $\phi_{101}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{242p^h}{4}$. $1=6$
 $\phi_{i+1}(x^{2p})$.

(c) if
$$g=(y,1)$$
 or $(y^3,1)$ then $\phi_{101}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1}) = \frac{24}{4}(1+1) = 6.2 = 12.$
Since $H \cap cl(g) = \{(I,1), (y^2,1), (y,1)\}$ and $\phi(g) = \phi(g^{-1})$ otherwise =0.
11:-H_{111} = <(xy,1)> ; (a) if $g=(I,1)$ then
 $\phi_{111}(g) = \frac{|CG(G)|}{|CH(g)|} \phi(g) = \frac{242p^h}{4} \cdot 1 = 6 \phi_{i+2}(I).$
(b) if $g=((xy)^2, 1) = (x^{2p}, 1)$ then $\phi_{111(g)} = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{242p^h}{4} \cdot 1 = 6 \phi_{i+2}(x^{2p}).$

(c) if
$$g=(xy,1)$$
 or $((xy)^3,1)$ then $\phi_{111}(g) = \left|\frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1}))\right| = \frac{24}{4}(1+1)=6.2=12.$
Since $H \cap cl(xy) = \{(I,1), (xy^2,1), (xy,1)\}$ and $\phi(g) = \phi(g^{-1}) = 1$

Case (II):-

•

Nesir Rasool Mahmood, Zinah Makki Kadhim- On Artin cokernel of The $Group(Q_{2m} \times D_3)$ Where $m= 2p^h$, such that $h \in Z^+$ and p is prime number

Consider the group $G=(Q_{2.2p^h} \times D_3)$ and if H is a cyclic subgroup of $(Q_{2.2p^h} \times \{r\})$ then $H=\langle q,r \rangle$ and \emptyset the principle character of H and \emptyset j Artin's character of $Q_{2.2p^h}$, $1 \leq j \leq i+2$, by using theorem:-

$$\begin{split} & \varphi_{j}(g) = \left\{ \frac{|CG(g)|}{|CH(g)|} \sum_{i=1}^{n} \phi(hi) & \text{if } hi \in H \cap cl(g) \\ 0 & \text{if } H \cap cl(g) = \phi \right\} \\ & H = <(q, r) \\ & 1: H_{12} = <(I, r) > (a) & \text{if } g = (I, I) & \text{then} \\ & \phi_{12} = \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24 \cdot 2p^{h}}{|c < <(1)|} \cdot 1 = \frac{6|CQ2m(1)|}{3|C < <(1)|} \cdot 1 = 2 \cdot \phi_{j}(1) \\ & (b): \cdot If & g = (I, r) or = (I, r^{2}) & \text{then} \\ & \phi_{12}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{12 \cdot 2p^{h}}{|C < <(1)|} (I + I) = \frac{3|CQ2m(1)|}{3|C < <(1)|} \cdot 2 = 2 \cdot \phi_{j}(q) \\ & \text{Since } H \cap cl(g) = \{(I, 1), (I, r), (I, r^{2})\} & \text{and } \phi(g) = \phi(g^{-1}) = 1 \\ & othrewise = 0. \\ & 2: \cdot H_{22} = <(x^{2^{h}}, r) > (a) & \text{if } g = (I, I) & \text{then } \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{242p^{h}}{|C < <(x^{2^{h}})|} (I) = \frac{6|CQ2m(x^{2^{h}})|}{3|C < <(x^{2^{h}})|} (I) = 2 \cdot \phi_{j}(I) \\ & (b) & \text{if } g = (x^{2^{h}}, I) & \text{then } \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{242p^{h}}{|C < <(x^{2^{h}})|} (I) = \frac{6|CQ2m(x^{2^{h}})|}{3|C < <(x^{2^{h}})|} (I) = 2 \cdot \phi_{j}(x^{2^{h}}) \\ & (c) & \text{if } g = (x^{2^{h}}, I) & \text{then } \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{12 \cdot 2p^{h}}{3|C < <(x^{2^{h}})|} (I) = 2 \cdot \phi_{j}(x^{2^{h}}) \\ & (d) & \text{if } g = (x^{2^{h}}, r) & \text{then} \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{12 \cdot 2p^{h}}{3|C < <(x^{2^{h}})|} (I) = 2 \cdot \phi_{j}(g) \\ & (d) & \text{if } g = (x^{2^{h}}, r) & \text{then} \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{3|CQ2m(q)|}{3|C < <(x^{2^{h}})|} \cdot 2 = 2 \cdot \phi_{j}(q) \\ & (d) & \text{if } g = (x^{2^{h}}, r) & \text{then} \phi_{22}(g) = \\ & \frac{|CG(g)|}{|CH(g)|} (\phi(g) = \\ & (I, 1), (x^{2^{h}}, 1), (I, r), (x^{2^{h}}, r) \\ & \text{since } H \cap cl(g) = \\ & \{(I, 1), (x^{2^{h}}, 1), (I, r), (x^{2^{h}}, r) \\ & \text{since } H \cap cl(g) = \\ & \{(I, 1), (x^{2^{h}}, 1), (I, r), (x^{2^{h}}, r) \\ & \text{since } H \cap cl(g) = \\ & (I, 1), (x^{2^{h}}, 1), (I, r), (x^{2^{h}}, r) \\ & \text{since } H \cap cl(g) = \\ & \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24 \cdot 2p^{h}}{|C < (x^{(h)})|} \cdot 1 = \frac{6|CQ2m(g)|}{|CH(g)|} \cdot 1 = 2 \cdot \phi_{j}(I) \\ & \text{since } H \cap cl(g) = \\ & \frac{1 \cdot$$

$$\begin{array}{lll} (c) & if & g=(x^{p^{h}},1) & then & \phi_{32}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{12.2p^{h}}{3|C \propto \langle x^{p^{h}}\rangle|} (1+1) = \frac{3|CQ4p|}{3|C \propto \langle x^{p^{h}}\rangle|} \cdot 2 = 2.\phi_{j}(x^{p^{h}}) \cdot \\ (d) & if & g=(I,r) & then & \phi_{32}(g) & = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \phi(g^{-1})) = \frac{12.2p^{h}}{3|C \propto \langle x^{p^{h}}\rangle|} (1+1) = \frac{3|CQ2m(q)|}{3|C \propto \langle x^{p^{h}}\rangle|} \cdot 2 = 2.\phi_{j}(q) \cdot \\ (e) & if & g=(x^{2^{h}},r) & then\phi_{32}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{12.2p^{h}}{|C \propto \langle x^{p^{h}}\rangle|} (1+1) = \frac{3|CQ2m(q)|}{3|C \propto \langle x^{p^{h}}\rangle|} \cdot 2 = 2.\phi_{j}(q) \cdot \\ (f) & if & g=x^{p^{h}} & (,r) & then\phi_{32}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{6.2p^{h}}{3|C \propto \langle x^{p^{h}}\rangle|} (1+1+1+1) = \frac{6.4(2p^{h})}{3|C \propto \langle x^{p^{h}}\rangle|} = \frac{6|CQ2m(q)|}{3|C \propto \langle x^{p^{h}}\rangle|} = 2.\phi_{j}(q) \cdot \\ & since & H \cap \\ & cl(g) = \left\{ (I,1), \left(x^{2^{h}}, 1\right), \left(x^{p^{h}}, 1\right), (I,r), \left(x^{2^{h}}, r\right), \left(x^{2^{h}}, r\right) \right\} \cdot \\ & and & \phi(g) = \phi((g^{-1}) = 1 \cdot othrewise = 0 \cdot \\ & 4: -H_{4^{2}} = \langle x^{4^{p}}, r \rangle & (a) & if & g=(I,I) & then\phi_{42}(g) = \\ & \frac{|CG(g)|}{|CH(g)|}\phi(g) = \frac{242p^{h}}{|C \propto \langle x^{4^{p}}\rangle|} \cdot 1 = \frac{6|CQ2m(q)|}{3|C \propto \langle x^{4^{p}}\rangle|} \cdot 2 = 2.\phi_{j}(x^{4p}) \cdot \\ & (b) & if & g=(x^{4p}, 1) & then\phi_{42}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{12.2p^{h}}{3|C \propto \langle x^{4^{p}}\rangle|} (1+1) = \frac{3|CQ2m(q)|}{3|C \propto \langle x^{4^{p}}\rangle|} \cdot 2 = 2.\phi_{j}(x^{4p}) \cdot \\ & (c) & if & g=(I,r) & then & \phi_{42}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{12.2p^{h}}{3|C \propto \langle x^{4^{p}}\rangle|} (1+1) = \frac{3|CQ2m(q)|}{3|C \propto \langle x^{4^{p}}\rangle|} \cdot 2 = 2.\phi_{j}(q) \cdot \\ & (d) & if & g=(x^{4p}, r) & then & \phi_{42}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{12.2p^{h}}{3|C \propto \langle x^{4^{p}}\rangle|} (1+1+1+1) = \frac{6.4(2p)}{3|C \propto \langle x^{4^{p}}\rangle|} = 2.\phi_{j}(q) \cdot \\ & (d) & if & g=(X^{4p}, r) & then & \phi_{42}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{3|C \propto \langle x^{4^{p}}\rangle|}{3|C \propto \langle x^{4^{p}}\rangle|} = 3|C \propto \langle x^{4^{p}}\rangle|} = 2.\phi_{j}(q) \cdot \\ & (d) & if & g=(x^{4p}, r) & then & \phi_{42}(g) = \frac{|CG(g)|}{|CH(g)|}(\phi(g) + \phi(g^{-1})) = \\ & \frac{3|C \propto \langle x^{4^{p}}\rangle|}{3|C$$

$$\begin{aligned} 5: -H_{52} = (a) \quad if \quad g = (I,1) \quad then \\ \phi_{52}(g) &= \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{|C < > (x^{2p})|}, 1 = \frac{6|CQ2m(q)|}{3|C < > (x^{2p})|}, 1 = 2.\phi_{j}(I). \\ (b) \quad if \quad g = (x^{2p}, I) \quad then \\ \phi_{52}(g) &= \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p_{12p}}{|C < > (x^{2p2})|}, I = \frac{6|CQ4p|}{3|C < > (x^{2p2})|}, I = 2.\phi_{j}\left(x^{2p}\right). \\ (c) \quad if \quad g = (x^{4p}, I) \quad then \quad \phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{12.2p^{h}}{3|C < x < (x^{2p})|} (1 + I) = \frac{3|CQ2m(q)|}{3|C < x < (x^{2p})|}, 2 = 2. \ \phi_{j}(x^{4p}). \\ (d) \quad if \quad g = (x^{2p}, I) \quad then \quad \phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{122p^{h}}{3|C < x > (x^{2p})|} (1 + I) = \frac{3|CQ2m(q)|}{3|C < x > (x^{2p})|}, 2 = 2. \ \phi_{j}(x^{2p}). \\ (e) \quad if \quad g = (I, r) \quad then \quad \phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{12.2p^{h}}{3|C < x > (x^{2p})|} (1 + I) = \frac{3|CQ2m(q)|}{3|C < x > (x^{2p})|}, 2 = 2. \ \phi_{j}(q). \\ (f) \quad if \quad g = (x^{2p}, r) \quad the\phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{12.2p^{h}}{3|C < x > (x^{2p})|} (1 + I) = \frac{3|CQ2m(q)|}{3|C < x > (x^{2p})|}, 2 = 2. \ \phi_{j}(q). \\ (g) \quad if \quad g = (x^{4p}, r) \quad then \\ \phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{62p^{h}}{3|C < x > (x^{2p})|} (1 + I + I) = \frac{6.4(2p^{h})}{3|C < x > (x^{2p})|} = \frac{6|CQ2m(q)|}{3|C < x < (x^{2p})|}, 2 = 2. \ \phi_{j}(q). \\ (h) \quad if \quad g = (x^{2p}, r) \quad then \\ \phi_{52}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \\ \frac{62p^{h}}{3|C < x < (x^{2p})|} (1 + I + I + I) = \frac{6.4(2p^{h})}{3|C < x < (x^{2p})|} = \frac{6|CQ2m(q)|}{|CH(g)|} 2 = 2 \\ \phi_{j}(q). \end{aligned}$$

$$\frac{1}{3|C \ll x \times (x^{2p})|} (I + I + I) = \frac{1}{3|C \ll x \times (x^{2p})|} = \frac{1}{3|C \ll x \times (x^{2p})|} Z = 2.\psi_j(q).$$
since
$$H \cap$$

$$cl(g) = \{(I, 1), (x^{2^h}, 1), (x^{4^p}, 1), (x^{2^p}, 1), (I, r), (x^{2^h}, r), (x^{4^p}, r), (x^{2^p}, r)\}$$
and $\emptyset(g) = \emptyset((g^{-1}) = 1.othrewise = 0.$

$$6: -H_{62} = \langle x^p, r \rangle > (a) \quad if \quad g = (I, 1) \quad then \quad \emptyset_{62}(g) = \frac{|CG(g)|}{|C + (x^{2^h})|} \emptyset(g) = \frac{24.2p^h}{|C \ll x^{p})|} \cdot 1 = \frac{6|CQ2m(q)|}{3|C \ll x^{p})|} = 2.\emptyset_j(I)$$

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 7 / October 2015

7952

Since

$$\begin{aligned} H \cap cl(g) &= \\ \left\{ (l,1), \left(x^{2^{h}}, 1\right), \left(x^{p^{h}}, 1\right), \left(x^{4^{p}}, 1\right), \left(x^{2^{p}}, 1\right), \left(l, r\right), \left(x^{2^{h}}, r\right), \left(x^{p^{h}}, r\right), \left(x^{4^{p}}, r\right), \left(x^{2^{p}}, r\right), \left(x^{2^{p}}, r\right), \left(x^{4^{p}}, r\right), \left(x^{2^{p}}, r\right), \left(x^{2^{p}}, r\right), \left(x^{4^{p}}, r\right), \left(x^{2^{p}}, r\right), \left(x^{4^{p}}, r\right), \left(x^{4^{p$$

$$\begin{split} & \phi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ & \phi(g^{-1})) = \frac{6.2p^h}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^h)}{3|C < x > (x)|} = \frac{6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \phi_j(q) \\ & (m) \text{ if } g = (x^{4p}, r) \text{ then} \end{split}$$

$$\begin{split} & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (n) \ if \ g = (x^{2p}, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (o) \ if \ g = (x^{p}, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (p) \ if \ g = (x^{4}, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (q) \ if \ g = (x^{2}, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (r) \qquad if \ g = (x, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (r) \qquad if \ g = (x, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (r) \qquad if \ g = (x, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} (1 + 1 + 1 + 1) \frac{6.4(2p^{h})}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (r) \qquad if \ g = (x, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi(g^{-1})) = \frac{6.2p^{h}}{3|C < x > (x)|} \frac{-6|CQ2m(q)|}{3|C < x > (x)|} \cdot 2 = 2 \cdot \vartheta_{j}(q) \\ & (r) \qquad if \ g = (x, r) \ then \\ & \varphi_{92}(g) = \frac{|CG(g)|}{|CH(g)|} (\emptyset(g) + \\ & \varphi_{92}(g) = \frac{|CG(g)|}{3|C < x > (x)|} \frac{-6|CQ2m(q)|$$

$$\begin{aligned} (b) \ if \ g=(y^2, l) \ or \ (x^{2\frac{h}{p}}, l) \ then \ \phi_{102}(g) &= \frac{|CG(g)|}{|CH(g)|} \ \phi(g) = \frac{24.2p^{h}}{12}, l=2.(2p) \\ &= 2.\phi_{i+1}(x^{2\frac{h}{p}}), \\ (c) \ if \ g=(y, l) \ or \ (y^3, l) \ then \ \phi_{102}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) &= \frac{24}{12}(l+1)=4. \\ (d) \ if \ g=(l,r) \ then\phi_{102}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) &= \frac{12.2p^{h}}{12}, (l+1)=2.(2p)=2. \ \phi_{i+1}(q). \\ (e) \ if \ g=(y^2,r) \ or \ (x^{2\frac{h}{p}},r) \ then \ \phi_{102}(g) = \\ \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \phi(g^{-1})) = \frac{12.2p^{h}}{12}, (l+1)=2.(2p)=2. \ \phi_{i+1}(q). \\ (f) \ if \ g=((y,r) \ or \ (y^3,r) \ then \ \phi_{102}(g) = \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) = \frac{12}{12}(l+l+l+1)=4. \\ Since \ H \sim cl(g) = \{(l,1), (y^2, 1), (y, 1), (l,r), (y^2,r), (y,r)\} \ And \\ \phi(g) = \phi((g^{-1}) = 1.othrewise=0. \\ 11:-H_{112} = \langle xy, r\rangle > \ (a) \ if \ g=(l,l) \ then\phi_{112}(g) = \\ \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{12}, l=2.(2p) = 2.\phi_{i+2}(x^{2\frac{h}{p}}, l) \ then\phi_{112}(g) = \\ \frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{12}, l=2.(2p) = 2.\phi_{i+2}(x^{2\frac{h}{p}}). \\ (c) \ if \ g=(xy,l) \ or \ ((xy)^3, l) \ then \ \phi_{112}(g) = \ \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) = \frac{24}{12}(1+1)=4. \\ (d) \ if \ g=(l,r) \ then \ \phi_{112}(g) = \ \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) = \frac{2.2p^{h}}{12}, (l+1)=2.(2p) = 2. \ \phi_{i+2}(q). \\ (e) \ if \ g=(xy)^2, r) = (x^{2\frac{h}{p}, r) \ then \ \phi_{112}(g) = \ \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) = \frac{12.2p^{h}}{12}, (l+1)=2.(2p) = 2. \ \phi_{i+2}(q). \\ (f) \ if \ g=(xy,r) \ or((xy)^3,r) \ then \ \phi_{112}(g) = \ \frac{|CG(g)|}{|CH(g)|} (\phi(g) + \\ \phi(g^{-1})) = \frac{12.2p^{h}}{12}, (l+1)=4. \\ Since \ H \sim cl(g) = \{(l,1), ((xy)^2, 1)(xy, 1), (l,r), ((xy)^2, r), (xy, r)\} and \\ \phi(g) = \\ \phi((g^{-1}) = 1. \ othrewise = 0 \end{aligned}$$

Case (III):-

Consider the group $G=(Q_{2,2p^h} \times D_3)$ and if H is a cyclic subgroup of $(Q_{2,2p}h \times \{s\})$ then $H = \langle (q,s) \rangle$ and \emptyset the principle character of H and \emptyset *j* Artin's character of $Q_{2,2p^h}$, $1 \leq j \leq i+2$, by using theorem:- $\Phi j(g) = \begin{cases} \frac{|CG(g)|}{|CH(g)|} \sum_{i=1}^{n} \emptyset(hi) & \text{if } hi \in H \cap cl(g) \\ 0 & \text{if } H \cap cl(g) = \emptyset \end{cases}$ $H = \langle q, s \rangle >$ 1:-H₁₃=<(I,s)> (a) if g=(I,1) then $\phi_{13}(g) = \frac{|CG(g)|}{|CH(g)|}\phi(g) =$ $\frac{24.2p^{h}}{2|C < x > (I)|} \cdot 1 = \frac{6|CQ2m(q)|}{2|C < x > (I)|} \cdot 1 = 3.\phi_{j}(I).$ (b) if g=(I,s) $\frac{|CG(g)|}{|CH(g)|}\phi(g) = \frac{8.2p^{h}}{2|C < x > (I)|} \cdot 1 = \frac{2|CQ2m(q)|}{2|C < x > (I)|} \cdot 1 = \phi_{j}(q).$ then $\phi_{13}(g) =$ Since $H \cap cl(g) = \{(I, 1), (I, s)\}$ othrewise = 0 $2:-H_{23}=\langle (x^{2p},s) \rangle$ $\phi_{23}(g) =$ *(a)* then g=(I,1) $\frac{|CG(g)|}{|CH(g)|}\phi(g) = \frac{24.2p^{h}}{2|C < x > \left(x^{2p^{h}}\right)|} \cdot 1 = \frac{6|CQ2m(q)|}{2|C < x > \left(x^{2p^{h}}\right)|} \cdot 1 = 3.\phi_{j}(I).$ (b) if $g=(x^{2^{n}_{p}}, 1)$ then $\frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{24.2p^{h}}{2|C < x > (x^{2^{h}_{p}})|} \cdot 1 = \frac{6|CQ2m(q)|}{2|C < x > (x^{2^{h}_{p}})|} \cdot 1 = 3.\phi_{j}(x^{2^{h}_{p}}).$ $g = (x^{2_p^h}, 1)$ $\phi_{22}(q) =$ $\begin{array}{ccc} (c) & if & g=(I,s) & then \\ \frac{|CG(g)|}{|CH(g)|} \phi(g) = & \frac{8.2p^h}{2|C < x > \left(x^{2p}\right)|} & 1 = \frac{2|CQ2m(g)|}{2|C < x > \left(x^{2p}\right)|} & 1 = \phi_j(q). \end{array}$ then $\phi_{23}(q) =$ (d) if $g=(x^{2^h_p},s)$ the $\frac{|CG(g)|}{|CH(g)|} \phi(g) = \frac{8.2p^h}{2|C < x > (x^{2^h_p})|} \cdot 1 = \frac{2|CQ2m(q)|}{2|C < x > (x^{2^h_p})|} \cdot 1 = \phi_j(q).$ $\phi_{23}(g) =$ then $H \cap cl(g) = \{(I, 1), (x^{2^{h}_{p}}, 1), (I, s), (x^{2^{h}_{p}}, s)\} And \phi(g) =$ Since $\emptyset((g^{-1}) = 1 \text{ othrewise} = 0.$ 3:- $H_{33} = \langle x^{p^h}(s) \rangle$ (a) if g = (I,1) then $\phi_{33}(g) = \frac{|CG(g)|}{|CH(g)|} \phi(g) =$ $\frac{24.2p^{h}}{2|C < x > (x^{p^{h}})|} \cdot 1 = \frac{6|CQ2m(q)|}{2|C < x > (x^{p^{h}})|} \cdot 1 = 3.\phi_{j}(I).$

Nesir Rasool Mahmood, Zinah Makki Kadhim- On Artin cokernel of The $Group(Q_{2m} \times D_3)$ Where $m=2p^h$, such that $h \in Z^+$ and p is prime number

$5:-H_{53}=<(x^{2p},s)>$ (a) if $g=(I,1)$	then $\phi_{53}(g)=$	$\frac{ CG(g) }{ CH(g) } \phi(g) =$
$\frac{24.2p^{h}}{2 C < x > (x^{2p}) } \cdot 1 = \frac{6 CQ2m(q) }{2 C < x > (x^{2p}) } \cdot 1 = 3. \phi_{j}(I).$		
(b) if $g=(x^{2p})$,		$\phi_{53}(g) =$
$\frac{ CG(g) }{ CH(g) }\phi(g) = \frac{24.2p^n}{2 C < x > (x^{2p}) } \cdot 1 = \frac{6 CQ2m}{2 C < x > (x^{2p}) }$	$\frac{Q(q)}{ x^{2p}) }$. 1=3. $\phi_j(x^{2p})$.	
(c) if $g=(x^{4p},1)$ then	$\phi_{53}(g) =$	$\frac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\phi(g^{-1})) = \frac{12.2p^{h}}{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 C < x > (x^{4p}) } (1+1) = \frac{3 CQ2m(x^{4p}) }{2 $	$\frac{q_{j}}{ q_{p} } = 2 = 3. \phi_j(x^{4p}).$	
(d) if $g=(x^{2p},1)$ then	$\phi_{53}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\phi(g^{-1}) = \frac{12.2p^{h}}{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = \frac{3 CQ2m(a) }{2 C < x > (x^{2p}) } (1+1) = 3 CQ2m(a) $	$\frac{q_{j}}{(2p)}$.2=3. $\phi_j(x^{2p})$.	
	then	$\phi_{53}(g) =$
$\frac{ CG(g) }{ CH(g) }\phi(g) = \frac{8.2p^{h}}{2 C < x > (x^{2p}) } \cdot 1 = \frac{2 CQ2m(q) }{2 C < x > (x^{2p}) }$	$\frac{ 0 }{ p_{j} } \cdot 1 = \phi_{j}(q).$	
(f)	(x^{2p},s)	$then \phi_{53}(g) =$
$\frac{ CG(g) }{ CH(g) }\phi(g) = \frac{8.2p^{h}}{2 C < x > (x^{2p}) } \cdot 1 = \frac{2 CQ2m(q) }{2 C < x > (x^{2p}) }$	$\frac{ 0 }{ p_{j} } \cdot 1 = \phi_{j}(q).$	
(g) if $g=(x^{4p},s)$ then	$\phi_{53}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\phi(g^{-1}) = \frac{4.2p^{h}}{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C $	$2^{ j }{2^{2p} } \cdot 2 = \phi_j(q).$	
(h) if $g=(x^{2p},s)$ then	$\emptyset_{53}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\phi(g^{-1}) = \frac{4.2p^{h}}{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C < x > (x^{2p}) } (1+1) = \frac{ CQ2m(q) }{2 C $	$(2) _{(2p) } \cdot 2 = \emptyset_j(q).$	
Since		
$H \sim cl(g) =$		
$\{(l,1), (x^{2^h_p}, 1), (x^{4^p}, 1), (x^{2^p}, 1), (l, n)\}$	s), $\left(x^{2_p^h}, s\right)$, $\left(x^{4_p}, s\right)$	s), (x^{2p}, s)
And $\phi(g) = \phi((g^{-1}) = 1 \text{ othrewise}$		
$6:-H_{63}=<(x^p,s)>$ (a) if $g=(I,1)$	then $\emptyset_{63}(g) =$	$\frac{ CG(g) }{ CH(g) } \phi(g) =$
$\frac{24.2p^{h}}{2 C < x > (x^{p}) } \cdot 1 = \frac{6 CQ2m(q) }{2 C < x > (x^{p}) } \cdot 1 = 3.\phi_{j}(I).$		
(b) if $g=(x^{2p})$,	1) then	$\phi_{63}(g) =$
$\frac{ CG(g) }{ CH(g) }\phi(g) = \frac{24.2p^{h}}{2 C < x > (x^{p}) } \cdot 1 = \frac{6 CQ2m(d) }{2 C < x > (x^{p}) }$	$\frac{q) }{p_{j} }$. 1=3. $\phi_j(x^{2p})$	

Nesir Rasool Mahmood, Zinah Makki Kadhim- On Artin cokernel of The $Group(Q_{2m} \times D_3)$ Where $m=2p^h$, such that $h \in Z^+$ and p is prime number

7:- H ₇₅	B=< (<i>x</i> ⁴ ,8	s)>; (a) i	if g=(I,1)	then $\phi_{73}(g)=$	$\frac{ CG(g) }{ CH(g) } \phi(g) =$
$\frac{24.2}{2 C < x > x}$	$\frac{p^h}{(x^4)}$. 1=	$\frac{-6 CQ2m(q) }{2 C < x > (x^4) }$. 1	$=3.\phi_j(I).$		
		$g=(x^{4p},1)$		$\phi_{73}(g) =$	$\frac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$()) = \frac{1}{2 C }$	$\frac{2.2p^h}{\langle x \rangle (x^4) } (1+1)$	$\frac{3 CQ2m(q) }{2 C < x > (x^4) }$.2=3. $\phi_j(x^{4p})$	
		$g=(x^4,1)$			$\frac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$()) = \frac{1}{2 C }$	$\frac{2.2p^h}{\langle x \rangle \langle x^4 \rangle } (1+1)^{\frac{1}{2}}$	$\frac{3 CQ2m(q) }{2 C < x > (x^4) }$.2=3. $\phi_j(x^4)$	
(d)		if		then	$\phi_{73}(g) =$
$\frac{ CG(g) }{ CH(g) }$	$\emptyset(g)=$	$\frac{8.2p^h}{2 C < x > (x^4) }$. 1=		$1=\phi_j(q).$	
(e)	if	$g=(x^{4p1},s)$	then	$\phi_{73}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$)) = \frac{1}{2 C^{4} }$	$\frac{4.2p^h}{\langle x \rangle \langle x^4 \rangle } (1+1)^{\frac{1}{2}}$	$\frac{ CQ2m(q) }{2 C < x > (x^4) }$.2=Øj(q).	
Since	$H \cap cl($	$(g) = \{(I, 1), (x^{4\mu})\}$	$(x^4, 1), (x^4, 1), (1)$	$[,s),(x^{4p},s),(x^{4},s)\}$	$And \emptyset(g) =$
Ø((g ⁻	$^{1}) = 1 a$	othrewise =	0		
				then $\emptyset_{83}(g) =$	$\frac{ CG(g) }{ CH(g) }\phi(g) =$
$\frac{24.27}{2 C < x>}$	$\frac{p^h}{ (x^2) }$. 1=	$= \frac{6 CQ2m(q) }{2 C < x > (x^2) } \cdot 1$	$=3.\phi_j(I).$		
<i>(b)</i>	if	$g = (x^{2_p^h}, 1)$	then	$\phi_{83}(g) =$	$\frac{ CG(g) }{ CH(g) } \phi(g) =$
$\frac{24.2n}{2 C < x>}$	$\frac{p^{h}}{ (x^{2}) }$. 1=	$= \frac{6 CQ2m(q) }{2 C < x > (x^2) } \cdot 1$	$=3.\phi_j(x^{2^h_p}).$		
(c)	if	$g=(x^{4p},1)$	then	$\phi_{83}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$)) = \frac{1}{2 C^{4} }$	$\frac{2.2p^h}{\langle x \rangle \langle x^2 \rangle } (1+1)$	$\frac{3 CQ2m(q) }{2 C < x > (x^2) }$.2=3. $\phi_j(x^{4p})$	
(d)	if	$g=(x^{2p},1)$	then	$\phi_{83}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$()) = \frac{1}{2 C^{4} }$	$\frac{2.2p^h}{\langle x \rangle \langle x^2 \rangle } (1+1)$	$\frac{3 CQ2m(q) }{2 C < x > (x^2) }$.2=3. $\phi_j(x^{2p})$	
(e)	if	g=(x ⁴ ,1)	then	$\phi_{83}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1}$	$))=\frac{1}{2 C_{<}}$	$\frac{2.2p^h}{\langle x \rangle \langle x^2 \rangle } (1+1)$	$\frac{3 CQ2m(q) }{2 C < x > (x^2) }$.2=3. $\phi_j(x^4)$	
		× //			

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 7 / October 2015

7963

(d)	if	$g=(x^{4p},1)$	then	$\phi_{93}(g)=$	$rac{ CG(g) }{ CH(g) }(\emptyset(g)+$
$\emptyset(g^{-1})$	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{ x }(1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	$3. \emptyset_j(x^{4p}).$	
(e)	if	$g=(x^{2p},1)$	then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1})$	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{ x }(1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	$3. \emptyset_j(x^{2p}).$	
(f)	if	$g=(x^{p},1)$	then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1})$	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{ x>(x) }(1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	3. $\phi_j(x^p)$.	
(g)	if g	$g=(x^4, 1)$	then	$\emptyset_{93}(g)=$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1})$	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{\langle x > (x) } (1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	3. $\phi_{j}(x^{4})$	
(h)	if	$g=(x^2,1)$	then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$ \emptyset(g^{-1}) $	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{\langle x \rangle \langle x \rangle } (1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	$3. \phi_j(x^2)$	
(i)	if	g=(x,1)	then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$ \emptyset(g^{-1}) $	$(1)) = \frac{12}{2 C_{4} }$	$\frac{2.2p^{h}}{\langle x > (x) } (1+1) =$	$\frac{3 CQ2m(q) }{2 C < x > (x) } \cdot 2 =$	$3. \phi_j(x)$	
(j)		if	g=(I,s)	then	$\phi_{93}(g) =$
$\frac{ CG(g) }{ CH(g) }$	$\frac{ }{ } \phi(g) =$	$\frac{8.2p^h}{2 C < x > (x) } \cdot 1 = \frac{2}{2}$	$\frac{2 CQ2m(q) }{2 C < x > (x) }$. $1 = 0$	$\delta_j(q).$	
(k)		if	$g=(x^{2h})$	^b ,s)	$then \emptyset_{93}(g) =$
$\frac{ CG(g) }{ CH(g) }$	$\frac{ }{ } \phi(g) =$	$\frac{8.2p^h}{2 C < x > (x) } \cdot 1 = \frac{2}{2}$	$\frac{2 CQ2m(q) }{2 C(x) }$. 1=0	$\delta_j(q).$	
(1)	if	$g=(x^{p^h},s)$	then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$ \emptyset(g^{-1}) $	$(1)) = \frac{4}{2 C }$	$\frac{2p^{h}}{ x>(x) }(1+1) =$	$\frac{ CQ2m(q) }{2 C < x > (x) } \cdot 2 = 0$	$ otin_j(q). $	
(m)	if	$g=(x^{4p},$	s) then	$\phi_{93}(g) =$	$\tfrac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$ \emptyset(g^{-1}) $	$(1)) = \frac{4}{2 C^{4} }$	$\frac{2p^{h}}{ x>(x) }(1+1) =$	$\frac{ CQ2m(q) }{2 C < x > (x) } \cdot 2 = 0$	$ onumber Ø_j(q).$	
		$g=(x^{2p},s)$			$\frac{ CG(g) }{ CH(g) }(\emptyset(g) +$
$\emptyset(g^{-1})$	$(1)) = \frac{4}{2 C_{<}}$	$\frac{2p^{h}}{ x>(x) }(1+1) =$	$\frac{ CQ2m(q) }{2 C(x) } \cdot 2=0$		
	•				

<u>Example:-(4,2)</u>

Let p = 5, h = 2; $m = 2.p^{h} = 2.5^{2} = 50$, such that h is any positive integer and p is prime number, $Q_{2m} = Q_{100}$ To find Artin's character of the group $(Q_{100} \times D_{3})$ the cyclic subgroup of Q_{100} which are $\{\langle I \rangle, \{\langle x^{50} \rangle\}, \{\langle x^{25} \rangle\}, \{\langle x^{20} \rangle\}, \{\langle x^{10} \rangle\}, \{\langle x^{5} \rangle\}, \{\langle x^{2} \rangle\}, \{\langle$

 $\{ \langle I, I \rangle \}, \{ \langle x^{50}, 1 \rangle \}, \{ \langle x^{25}, 1 \rangle \}, \{ \langle x^{20}, 1 \rangle \} , \{ \langle x^{10}, I \rangle \}, \{ \langle x^{5}, 1 \rangle \}, \{ \langle x^{4}, I \rangle \}, \{ \langle x^{2}, 1 \rangle \} , \{ \langle x, I \rangle \}, \{ \langle x^{50}, r \rangle \}, \{ \langle x^{25}, r \rangle \}, \{ \langle x^{20}, r \rangle \} , \{ \langle x^{10}, r \rangle \}, \{ \langle x^{5}, r \rangle \}, \{ \langle x^{4}, r \rangle \}, \{ \langle x^{2}, r \rangle \} , \{ \langle x, r \rangle \}, \{ \langle x, r \rangle \}, \{ \langle x^{2}, r \rangle \} , \{ \langle x, r \rangle \}, \{ \langle x, r \rangle$

 $\{ \langle I, s \rangle \}, \{ \langle x^{50}, s \rangle \}, \{ \langle x^{25}, s \rangle \}, \{ \langle x^{20}, s \rangle \}, \{ \langle x^{10}, s \rangle \}, \{ \langle x^{5}, s \rangle \}, \{ \langle x^{4}, s \rangle \}, \{ \langle x, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle y, s \rangle \}, \{ \langle xy, s \rangle \}, \{ \langle xy$

Then $Ar(Q_{100} \times D_3) = Ar(Q_2^2, 5^2 \times D_3) = Ar(Q_2^2, 5^2) \otimes Ar(D_3) =$

	Γ-classe	Γ -classes of $Q_{2,2p} \times \{1\}$												
Γ-classes	[1,1]	$[x^{z_v^h},1]$	$[x^{p^{h}}, 1]$	$[x^{4p}, 1]$	[x ² ^p ,1]	$[x^{p}, 1]$	[x ⁴ ,1]	[x ² ,1]	[x,1]	[y,1]	[xy,1]			
CL.	1	1	2	2	2	2	2	2	2	2(2 ^h _p)	2(2 ^h _p)			
CQ _{2.2p} ^h ×D ₃ (CL _e)	24(2 ^h _p)	24(2 ^h _p)	12(2 ^h _p)	12(2 ^h _p)	$12(2_{p}^{h})$	$12(2_{p}^{h})$	$12(2_p^h)$	12(2 ^h _p)	12(^h ₂ p) 24	24			
Φ(I,1)	5													
Φ(2,1)														
Φ(3,1)														
Φ(4,1)														
Φ(5,1)														
Φ(6,1)							L .							
Φ(7,1)					6Ar	$(Q_{2,2})$	(ⁿ							
Φ(8,1)							1913 4 - 93563							
Ф(9,1)														
Φ(10,1)														
Φ(11,1)														

	Γ -classes of $Q_{2,2p}^h \times \{1\}$
Γ-classes	$[1,1] [x^{2\frac{p}{p}},1] [x^{y^{p}},1] [x^{4y},1] [x^{2y},1] [x^{p},1] [x^{4},1] [x^{2},1] [x,1] [y,1] [xy,1]$
CL_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CQ _{2.2p} ^h ×D ₃ (CL ₆)	$\frac{24(2^{h}_{p})}{24(2^{h}_{p})} \frac{24(2^{h}_{p})}{12(2^{h}_{p})} \frac{12(2^{h}_{p})}{12(2^{h}_{p})} \frac{12(2^{h}_{p})}{12(2^{h}_{p$
Φ(I,2)	
Ф(2,2)	
Ф(3,2)	
Ф(4,2)	
Ф(5,2)	
Ф(6,2)	
Ф(7,2)	2Ar(Q _{2.2p} ^h)
Φ(8,2)	
Ф(9,2)	
T(10 3)	
Ф(10,2)	

				Г	-classes (of Q _{2.2p} ^h	×{1}				
Γ-classes	[1,1]	$[x^{2^h_y},1]$	$[x^{p^{h}}, 1]$	$[x^{4p}, 1]$	$[x^{2p}, 1]$	$[x^{p}, 1]$	[x ⁴ ,1] [2	r ² ,1]	[x,1]	[y,1]	[xy,1]
CL.	1	1	2	2	2	2	2	2	2	2(2 ^h _p)	2(2 ^h _p)
CQ _{2.2p} ^h ×D ₃ (CL ₆)	24(2 ^h _p)	24(2 ^h _p)	12(2 ^h _p)	12(2 ^h _p)	12(2 ^h _p)	12(^h ₂ p) 24	24			
Φ(I,3)											
Φ(2,3)											
Φ(3,3)											
Φ(4,3)											
Φ (5,3)											
Φ(6,3)						2	L 1				
Ф(7,3)					3Ar(Q2.20	,")				
Ф(8,3)							S2 - 55				
Ф(9,3)											
 $\Phi(10,3)$											
Φ(11,3)	1										

	Γ-clas	ises of Q ₂	_{2p} ^h ×{r}								
Γ-classes	[l,r]	$[x^{2_y^h},r]$	$[x^{p^h},r]$	[x ⁴ ^p ,r]	[x ² ^p ,r]	[<i>x^p</i> ,r]	[x ⁴ ,r]	$[x^2,r]$	[x,r]	[y,r]	[xy,r]
CL.	2	2	4	4	4	4	4	4	4	4(2 ^h) $4(2_p^n)$
$ CQ_{2.2}^{h} \sim D_{3}(CL_{s}) $	12 (2	$\frac{1}{2}$) 12(2)	$6(2_p^h)$	6(2 ^{<i>h</i>} _{<i>p</i>})	6(2 ^h _p)	6(2 ^h _p)	6(2 ^h _p)	6(2 ⁿ _p)	$6(^{h}_{2}p)$	24	24
Φ(I,1)	s:										
Φ(2,1)											
Φ (3,1)											
Φ(4,1)							0				
Φ(5,1)							•				
Φ(6,1)											
Φ(7,1)											
Φ(8,1)											
Φ(9,1)											
Φ(10,1)											
Φ(11,1)											

		Γ -classes of $Q_{2,2p}^{n} \times \{r\}$										
Γ-classes	[l,r]	$[x^{2\frac{h}{v}},r]$	[<i>x</i> ^{<i>p</i>^h} , r]	[x ⁴ ^p ,r]	[x ² ^p ,r]	$[x^p,r]$	⁹ ,r] [x ⁴ ,r]	[x²,r]	[x,r]	[y,r] [x	y,r]	
CL_	2	2	4	4	4	4	4	4	4	4(2 ^h _p)	4(2 ^h _p)	
$ CQ_{2,2}^{h}{}_{p} \times D_{3}(CL_{6}) $	12 ($\binom{2^{h}}{p}$ 12(2	$\binom{h}{p}$ 6(2 ^{<i>h</i>} _{<i>p</i>})	6(2 ^h _p)	6(2 ^h _p)	6(2 ^h _p)	6(2 ^h _p)	$6(2_p^h)$	6(^h ₂ p)	24	24	
Ф(I,2)	-											
Φ (2,2)												
Φ (3,2)												
Φ (4,2)												
Φ (5,2)						12						
Φ(6,2)					2/	Ar(C	2.2p	^h)				
±(0,2)												
Ф(7,2)												
Φ(7,2) Φ(8,2)												
Φ(7,2) Φ(8,2) Φ(9,2) Φ(10,2)												

		Γ -classes of $Q_{2,2p}^{h} \times \{r\}$										
Γ-classes	[l,r]	$[x^{2\frac{h}{v}}, r]$	$[x^{p^h},r]$	[x ⁴ ^p ,r]	[x ² ^p ,r]	[<i>x</i> ^p ,r]	[x ⁴ ,r]	$[x^2,r]$	[x,r]	[y,r]	[xy,r]	
CL.,	2	2	4	4	4	4	4	4	4	4(2 ^h _p)	4(2 ^h _p)	
CQ _{2.2} ^h p×D ₃ (CL ₆)	12 (2 ^h _p) 12(2 ^h _p) 6(2 ^h _p)	6(2 ^h _p)	6(2 ^h _p)	6(2 ^h _p)) 6(2	^h _p) 6(2)	^h _p) 6(^h ₂ p) 24	24	
Ф(I,3)	0											
Φ(2,3)												
(3,3)												
(4,3)												
Φ(5,3)												
Φ(6,3)						0						
Ф(7,3)						-						
(8,3)												
Φ(9,3)												
Φ (10,3)												
Φ (11,3)	1											

				I	-classes	of Q2.20	ⁿ × {s }				
Γ-classes	[l,s]	$[x^{2^k_{\mathcal{D}}},s]$	[x ^{ph} ,s]	$[x^{4p},s]$	$[x^{2p},s]$	[x ^p ,s]	[x ⁴ ,5]	[x ² ,5]	[x,s]	[y,s]	[xy,s]
CL.,	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	6(2 ^h _p)
CQ _{2.2} ^h p×D ₃ (CL ₆)	8 (2 ^h _p)) 8(2 ^h _p)	4(2 ⁿ _p)	4(2 ^h _p)	4(2 ⁿ _p)	4(2	$\binom{h}{p} = 4(2^{h}_{p})$) 4(2 ^h _p)	4(^h ₂	p) 8	8
Φ(I,1)											
Φ(2,1)											
Φ(3,1)											
Φ(4,1)											
Φ(5,1)											
Φ(6,1)											
Φ(7,1)						-					
Φ(8,1)						0					
Φ(9,1)											
T/10 11											
Φ(10,1)											

					Γ-class	es of Q22	$_{1p}^{h} \times \{s\}$				
Γ-classes	[l,s]	$[x^{2_{y}^{h}},s]$	$[x^{p^{h}}, s]$	[x ⁴ ^p ,s]	[x ² ^p ,5]	$[x^p,s]$	[x ⁴ ,s]	$[x^2, 5]$	[X,5]	[y,s]	[xy,s]
CL ₆	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	6(2 ^h _p)
CQ _{2.2} ^h p×D ₃ (CL ₄)	8 (2 ^k) 8(2 ^h _p)	4(2 ^h _p)	$4(2_{p}^{h})$	4(2 ^h _p)	4(2 ^h _p)	4(2 ^h _p)) $4(2_p^h)$	4(^h ₂ p)) 8	8
Φ(I,2)											
Φ(2,2)											
Φ(3,2)											
Φ(4,2)											
Φ(5,2)											
Φ(6,2)											
Φ (7,2)											
Φ(8,2)						0					
Φ(9,2)											
Φ(10,2)											
Φ(11,2)											

Nesir Rasool Mahmood, Zinah Makki Kadhim- On Artin cokernel of The $Group(Q_{2m} \times D_3)$ Where $m= 2p^h$, such that $h \in Z^+$ and p is prime number

					Γ-classe:	s of Q _{2.2p}	$^{h} \times \{s\}$				
Γ-classes	[l,s]	$[x^{2_p^h},s]$	$[x^{p^h},s]$	[x ^{4p} ,s]	[x ^{2p} ,s]	$[x^p,s]$	[x ⁴ ,s]	$[x^2,s]$	[x,s]	[y,s]	[xy,s]
CL.	3	3	6	6	6	6	6	6	6	6 (2 ^h _p)	6(2 ^h _p)
CQ _{2.2} ^h p×D ₃ (CL ₅)	8 (2 ^h _p)	8(2 ^h _p)	$4(2_{p}^{h})$	4(2 ^h _p)	$4(2_{p}^{h})$	4(2 ^h _p) 4(2 ^h _p) 4(2 ^h _p)	4(^h ₂ p)	8	8
Ф(1,3)											
Φ(2,3)											
Ф(3,3)											
Φ(4,3)											
Φ(5,3)											
Ф(6,3)											
Φ(7,3)						_	L.				
Ф(8,3)					Ar(Q2.2	, ")				
Φ(9,3)											
Φ(10,3)											

Table 4

REFERENCES

 $[1] N.R.Mahamood, "The Cyclic Decomposition of the factor Group cf(Q_{2m},Z)/<math>\overline{R}$ (Q_{2m})", M.SC, thesis, University of Technology ,1995.

[2] A.S.Abid, "Artin's Characters Table Of Dihedral Group for Even number", M.SC. thesis, University of Kufa,2006.