

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

An Artificial Neural Network Modelling Approach for Development of QSAR Model for Anticancer Activity of Gossypol Acetic Acid against Anticancer Target BCL2

VARUN KUMAR KASHYAP

Research Scholar, Department of Statistics University of Lucknow, Lucknow, India Dr. RAJEEV PANDEY Professor, Department of Statistics University of Lucknow, Lucknow, India Dr. RAJIV SAKSENA Analyst cum Programmer, Department of Statistics University of Lucknow, Lucknow, India Dr. FEROZ KHAN Senior Scientist Central Institute of Medicinal & Aromatic Plants Lucknow, India

Abstract:

The aim of this study is to explore a quantitative structural activity relationship (QSAR) for anticancer activity of BCL2. QSAR modeling is implemented with anticancer activity of Gossypol acetic acid against BCL2. A dataset of 255 compounds for anti-BCL2 activity are collected as an initial data set from the PubChem database of NCBI. The anti-BCL2 compound set is used to build QSAR model using Artificial Neural Network (ANN) regression method. The developed model bear coefficient of determination of 0.97 for training set with 10-fold cross validation, while 0.98 for the test set. On the basis of ANN QSAR model 9 compounds are recommended as anti-BCL2 active compound.

Key words: BCL2, Cancer, QSAR (Quantitative Structural Activity Relationship), ANN and virtual screening.

1. INTRODUCTION

Cancer is a leading cause of death worldwide. It is a disease of cell characterized by progressive, persistent, abnormal, and uncontrolled proliferations of tissues. Deaths from cancer worldwide are projected to continue rising. By 2030, it is projected that there will be an estimated 26 million new cancer cases and 17 million cancer deaths per year [1]. QSAR is a powerful computational approach used for the study of biological activities with properties or molecular structures which is helpful to explore the relationship between the structures of ligands and their activities [15-17]. Also, it offers the advantages of higher speed and lower costs for bioactivity evaluation, especially compared to experimental testing. In QSAR approach, Multiple Linear Regression (MLR) and Partial Least Square (PLS) are two extensively useful techniques. However, regression analysis gives assumption of a linear relationship between the biological activity and one or more descriptors. On the other hand, biological phenomena are considered nonlinear by nature, and therefore, the contribution of some of the parameters to a specific biological activity can be nonlinear.

The present study develops the QSAR model using Artificial Neural Network (ANN) approach for anti-BCL2 activity of Gossypol acetic acid in case of non-linear biological phenomena.

2. EXPERIMENTAL

2.1. *Biological Activity Data:* Gossypol acetic acid centered functional analogs containing anti-BCL2 activity is collected as

an initial data set from NCBI database. Two dimensional molecular descriptors are calculated for each compound for digitization of observational data. Total 255 descriptors are calculated by PaDEL software (National University of Singapore), that sufficiently represents the structural properties of molecules.

2.2. Molecular Descriptors: Initially 255 descriptors are calculated for all compounds. Since, not all of the 255 descriptors contribute to the bioactivity; therefore, following measures were taken to eliminate the less informative descriptors: (i) eliminating the descriptors with constant values, (ii) eliminating the descriptors with more than 90% zero values. (iii) eliminating the descriptors which have constant or zero variance. Consequently, highly correlated descriptors are excluded by using the correlation matrix approach. This filtering step includes selection of those descriptors which have correlation coefficient >0.4 (positive or negative) with bioactivity vector of available datasets. As a result, only 45 descriptors come into existence for further processing. This matrix based feature reduction is used to reduce the variable space and the chance of correlation between the descriptors. Removal of correlated descriptors reduced the noise from the data and finally we get 100 activity compound and 45 descriptors. The selected descriptors use for building ANN model. The detail description about descriptors can be accessed from PaDEL descriptors website (http://www.ncbi.nlm.nih.gov).

2.3: Training and Test Set Assembly. Owing to tremendous non-linearity and error, removed from the different statistical analysis, the dataset is randomly partitioned into training and test set with probability of 80% and 20%. Accordingly, we have 100 training set compounds and 28 test set compound having

adequate coverage in terms of both chemical and biological diversity.

2.4: Validation of QSAR model: For testing the internal stability and predictive ability, QSAR model is validated by the internal, external validation and randomization test procedure.

2.4.1. Internal Validation: Internal validation is carried out using leave-one-out (LOO) method. The cross validation regression coefficient (\mathbb{R}^2) was calculated using the equation which describes the internal stability of a model.

$$R^{2} = 1 - \frac{\Sigma(Y_{pred} - Y_{exp})^{2}}{\Sigma(Y_{exp} - \hat{Y})^{2}}$$
 2.4.1.1

Where, R^2 refers cross validation regression coefficient, $Y_{experimental}$ and Y_{pred} activity of the molecule in the training set, respectively, and \ddot{Y} is the average activity of all molecules in the training set.

2.4.2. External Validation

For external validation, the activity of each molecule in the test set was predicted using the model developed by the training set. The regression coefficient (r^2) value is calculated by the following formula.

$$r_{cv}^{2} = 1 - \frac{\Sigma (Y_{pred(test)} - Y_{exp(test)})^{2}}{\Sigma (Y_{exp(test)} - \hat{Y}_{training})^{2}}$$
 2.4.2.1

where, r_{cv}^2 refers regression coefficient, $Y_{exp(test)}$ and $Y_{pred(test)}$ are experimental and predictive test activity of the molecule in the training set respectively, and $\ddot{Y}_{training}$ is the average activity of all molecules in the training set. Both summations are over all molecules in the test set. The regression coefficient r_{cv}^2 is

indicative of the predictive power of the current model for external test set. Generally, a QSAR model is considered to have a high predictive power only if the r_{cv}^2 is greater than 0.6 for the test set.

3. ARTIFICIAL NEURAL NETWORK MODEL

ANN is a massive parallel-distributed information processing system that has certain performance characteristics. resembling biological neural networks of the human brain. ANN has been developed as a generalization of mathematical models of human cognition and neural biology [21]. The available data set is partitioned into two parts, one corresponding to training and the other corresponding to test of the model. The purpose of the method is to determine the set of connection weights and nodal thresholds that cause the ANN to estimate outputs that are sufficiently close to target values. This fraction of the complete data to be employed for training should contain sufficient patterns so that the network can summarized the underlying relationship between input and output variables adequately [22].

The network consists of an input layer, an output layer and a number of hidden layers. At each node in a layer the information is received, stored, processed and communicated further to nodes in the next layer. All the weights are initialized to small random numeric values at the beginning of procedure. These weights are updated or modified iteratively using the generalized delta rule or steepest-gradient descent principle. The training process is stopped when no appreciable change is observed in the values associated with the connection links or some termination criterion is satisfied. The training of aback-propagation network consists of two phases: a forward pass during which the processing of information occurs from the input layer to the output and a backward pass when the error

from the output layer is propagated back to the input layer and the interconnections are modified [23].

An example of a network topology is shown in **Figure 1.1**.

Figure 1.1 Example of 5-5-1 Neural network Architecture.

4. RESULTS AND DISCUSSION

ANN analysis is performed on all the compounds using R software; we have included all 70 molecules of the training set for the model generation. A number of suitable models are developed by using these 70 molecules wherein we select the best suitable model in our present study. Using ANN method, we were interested to investigate the non-linear characteristics of the activity parameter. Therefore, Feed Forward Neural Network (FFNN) [19] is developed in order to check the dependence of biological activity on structural features.

The multiple-layer FFNN functionality which undergoes a supervised training by the back propagation error is used. The number of neurons in the hidden layer and the number of rows in the training set are balanced to achieve the optimum predictive power for the neural network. The statistics obtained for the FFNN treatment are N = 45, input columns (descriptors) = 3, net configuration = 3-9-1 (3 input nodes, 9 hidden neurons in the hidden layer, 1 neuron in the output layer) with RMSE =

0.30 and R^2 for training set is 0.97 and for test set $r^2 = 0.98$. The plot of predicted bioactivity versus empirical log 1/IC50 based on this model is shown in Fig. 1.2 and the values are shown in Table 1.

Figure 1.2. Graphical plot of Multiple Linear Regression Analysis which indicates linear relationship between experimental and predicted log IC_{50} with $r^2=0.90$.

Figure 1.3. Residual plot of Multiple Linear Regression Analysis for experimental and predicted log IC_{50} .

From the residual plot as shown in Fig.1.3 we say that the compounds in test and train set are equally scattered on the marginal line almost. Some are very far to the marginal line those compounds are treated as an outlier in our data set.

Table 1: The Observed and Predicted Values for each compound inTraining data set for ANN Model is given in the following table:

1 5.913 2 5.966 3 8.716 4 8.006 5 4.499	503 6.008 147 5.871 044 8.987 368 7.999	-0.09 1679 0.09	9536 5				
2 5.966 3 8.716 4 8.006 5 4.499	147 5.871 044 8.987 368 7.999	0.094		51	5.075174	5.197838	-0.12266
3 8.716 4 8.006 5 4.499	044 8.987 368 7.999		4468 5	52	5.347108	5.266451	0.080657
4 8.006 5 4.499	368 7.999	-0.27	7193 5	53	5.393628	5.451487	-0.05786
5 4.499		0.006	6427 5	54	5.799093	5.796985	0.002108
	81 4.324	4463 0.175	5347 5	55	5.768321	5.747584	0.020737
6 6.551	08 6.629	9833 -0.07	1875 5	56	5.010635	4.899867	0.110768
7 6.551	08 6.551	-9.3E	2-05 5	57	5.828946	5.845527	-0.01658
8 8.948	976 9.002	-0.05	5312 5	58	5.63479	5.570844	0.063946
9 7.549	609 7.487	7204 0.065	2405 5	59	7.727535	7.720714	0.006821
10 9.104	98 9.104	1742 0.000	0238 6	60	6.697034	6.673101	0.023933
11 8.814	33 8.742	2282 0.075	2048 6	61	8.641179	8.847388	-0.20621
12 10.55	059 10.47	7883 0.073	1758 6	62	3.401197	3.385937	0.01526
13 6.975	414 6.948	8016 0.027	7398 6	63	6.063785	6.109107	-0.04532
14 8.853	665 9.102	-0.24	1876 6	34	6.063785	6.109107	-0.04532
15 10.87	993 10.20	0.676	6599 6	65	8.131531	8.235956	-0.10442
16 7.377	759 7.320	0.057	7228 6	36	4.70048	4.635291	0.065189
17 8.294	05 8.360	-0.06	649 6	67	9.758462	9.63013	0.128332
18 5.940	171 5.921	0.018	8258 6	68	8.207947	8.372285	-0.16434
19 5.768	321 5.659	0.108	8721 6	69	6.476972	6.499899	-0.02293
20 6.492	24 6.552	-0.06	5067 7	70	6.55108	6.53044	0.02064
21 8.016	318 8.027	-0.01	158 7	71	5.347108	5.149052	0.198056
22 7.682	482 7.731	-0.04	1854 7	72	8.748305	8.740374	0.007931
23 6.016	157 6.008	3254 0.007	7903 7	73	8.517193	8.529355	-0.01216
24 2.302	585 2.760	0848 -0.45	5826 7	74	8.881836	8.870654	0.011182
25 9.277	999 9.250	0.02	7833 7	75	6.593045	6.578018	0.015027
26 4.605	17 4.385	5416 0.219	9754 7	76	8.101678	8.096342	0.005336
27 6.214	608 6.293	-0.07	784 7	77	6.507278	6.610657	-0.10338
28 5.560	682 5.497	7188 0.063	3494 7	78	6.173786	6.241226	-0.06744
29 5.703	782 5.666	6445 0.03	7337 7	79	7.244228	7.243825	0.000403
30 6.956	545 6.951	0.004	4655 8	80	10.81978	10.47273	0.347051
31 7.313	22 7.317	-0.00	0458 8	81	8.632306	8.69004	-0.05773
32 5.799	093 5.595	5679 0.203	3414 8	82	3.688879	3.786619	-0.09774
33 2.995	732 3.263	-0.26	8813 8	83	4.867534	4.802003	0.065531
34 11.28	978 10.52	2971 0.760	0073 8	84	7.21524	7.19422	0.02102
35 5.075	174 4.937	7803 0.137	7371 8	85	6.234411	6.179422	0.054989
36 2.995	732 3.330	-0.33	8502 8	86	8.794825	8.823131	-0.02831
37 3.688	879 3.735	-0.04	1678 8	87	2.397895	2.524644	-0.12675
38 5.347	108 5.238	312 0.108	8988 8	88	8.455318	8.456554	-0.00124
39 6.565	265 6.615	-0.05	5 8	89	7.824046	7.815002	0.009044
40 7.863	267 7.819	0.043	3948 9	90	7.600902	7.601967	-0.00107
41 3.688	879 3.757	-0.06	3883 9	91	8.948976	8.949072	-9.6E-05
42 5.598	422 5.565	5359 0.033	3063 9	92	5.521461	5.517782	0.003679
43 5.669	881 5.603	3651 0.066	623 9	93	4.70048	4.768063	-0.06758
44 3.891	82 3.918	-0.02	2653 9	94	10.66896	10.59309	0.075867
45 7.605	89 7.722	-0.11	653 9	95	5.438079	5.414608	0.023471
46 8.294	05 8.297	-0.00	0297 9	96	8.045588	8.063553	-0.01797
47 5.669	881 5.618	3599 0.05	1282 9	97	4.60517	4.509251	0.095919
48 6.684	612 6.679	0.003	5371 9	98	3.401197	3.577652	-0.17646
49 5.247	024 5.288	-0.04	1162 9	99	6.173786	6.234728	-0.06094
50 7.740	664 7.770	-0.02	2993 1	100	3.912023	3.897344	0.014679

Table 2: The Observed and Predicted Values for each compound in Test data set for ANN Model is given by the following table:

S.N	Observed	Predicted	Residual	s.
0	values for	value for		
	Test set	Test set		
1	7.003065	7.162931	-0.15987	15
2	5.298317	5.053179	0.245138	16
3	5.164786	4.764058	0.400728	17
4	10.63586	10.09866	0.537195	18
5	10.55059	10.47883	0.071758	19
6	8.38936	8.669518	-0.28016	20
7	4.867534	3.850911	1.016623	21
8	6.659294	6.718832	-0.05954	22
9	4.941642	4.968814	-0.02717	23
10	7.851661	8.004222	-0.15256	24
11	6.39693	6.654315	-0.25739	25
12	5.010635	4.077557	0.933078	26
13	5.438079	5.09744	0.340639	27
14	6.684612	6.788464	-0.10385	28

Observed Predicted No Residual values for value for Test set Test set 3.73767 3.825448 -0.08778 9 249561 9 172455 0.077106 5.1357985.025711 0.110087 7.038784 7 323686 -0 2849 8 630522 9 1 5 9 6 1 -0.52909 5 652489 9.044337 .3 39185 6.194405 6.31785 -0.123455.703782 5.571212 0.132579 769956 10.09391 -0.32395 1.808289 2.933645 -1.125366.017762 6.39693 6.661641 -0.2647111.51293 10.2081 1 304824 9.10498 9.692154 -0.58717

CONCLUSION:

Since the biological dataset has tremendous non-linearity and the linear statistical methods do not behave sufficiently for modeling purposes. It is presumed that machine learning methods may provide suitable way for their modeling. Therefore, in the present study we attempted with artificial neural network along with BCL2 inhibitors for regression modeling. It is observed that the ANN method is statistically sound ($R^2 = 0.97$, $r^2cv = 0.98$) for modeling the biological dataset. The selected descriptors used for ANN model are: BCUTp.1h, VCH.7, hmin, gmax, bpol, SCH.6, MDEC.23, MDEC.12 and MDEC.22. The developed model can be efficiently used for virtual screening of unknown Gossypol acetic acid centered functional analogs against BCL2.

REFERENCES:

 M. J.Thun, J. O. DeLancey, M. M. Center, A. Jemal, and E. M.Ward, "The global burden of cancer: priorities for prevention,"*Carcinogenesis*, vol. 31, no. 1, pp. 100–110, 2010.

- 2. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, J. Markopoulos, and O. Igglessi-Markopoulou, "A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis," *Molecular Diversity*, vol. 10, no. 3, pp.
- 3. S. Daunes and C. D'Silva, "QSAR study on the contribution of Log P and Es to the in vitro antiprotozoal activity of glutathione derivatives," *Journal of Medicinal Chemistry*, vol. 44, no. 18, pp. 2976–2983, 2001.
- S. Paliwal, S. Singh, and M. Pal, "In silico ligand based design of indolylpiperidinyl derivatives as novel histamineH1 receptor antagonists," *Drug Discoveries & Therapeutics*, vol. 6, no. 2, pp.69–77, 2012.
- S. Paliwal, S. Singh, and M. Pal, "In silico ligand based design of indolylpiperidinyl derivatives as novel histamineH1 receptor antagonists," *Drug Discoveries & Therapeutics*, vol. 6, no. 2, pp. 69–77, 2012.
- 6. Verma RP, Hansch C (2009) Taxane analogues against lung cancer: a quantitative structure-activity relationship study. Chem Biol Drug Des 73(6):627-36.
- Hansch C, Verma RP (2009) A QSAR study for the cytotoxic activities of taxoids against macrophage (MPhi)-like cells. Eur J Med Chem 44(1):274-9.
- A. Speck-Planche, V. V. Kleandrova, F. Luan and M. N. D. S Cordeiro, "Rational Drug Design for Anti-Cancer otherapy: Multi-Target QSAR Models for the in Silico Discovery of Anti-Colorectal Cancer Agents," *Bio*organic & Medicinal Chemistry, Vol. 20, No. 15, 2012, pp. 4848-4855.