

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

On Artin cokernel of The Group($Q_{2m} \times C_5$) Where $m=p_1^{s_1}$, $p_2^{s_2}$, $p_{1,p_2} > 2$, g.c.d(p_{1,p_2}) = 1, p_{1,p_2} are primes numbers and s_{1,s_2} are a positive integers numbers

Ass. Prof. NASERR RASOOL MAHMOOD

University of Kufa
Faculty of Education for Girls
Department of Mathematics
SALAH HSAAOUN JIHADI
University of Kufa
Faculty of Education for Girls
Department of Mathematics

Abstract:

The main purpose of This paper is to find Artin,s character table $Ar(Q_{2m} \times C_5)$)when isoddnumberm $m = p_1^{s_1}.p_2^{s_2}, g.c.d(p_1,p_2) = 1, p_1,p_2 > 2$, p_1,p_2 are primes numbers and s_1, s_2 are a positive integers numbers; where Q_{2m} is denoted to Quaternion group of order 4m, time is said to have only one dimension and space to have three dimension ,the mathematical quaternion partakes of both these elements; in technical language it may be said to be "time plus space", or "space plus time" and in this sense it has, or at least involves a reference to four dimensions, and how the one of time of space the three might in the chain of symbols girdled "- William Rowan Hamilton (Quoted in Robert Percival Graves "Life of sir William Rowan Hamilton" (3 vols., 1882, 1885, 1889)) , and C5 is Cyclic group of order 5.In 1962, C. W. Curits & I. Reiner studied Representation Theory of finite groups, in 1976, I. M. Isaacs studied Characters Theory of finite groups, In 1982, M. S. Kirdar studied The Factor Group of the Z-Valued class function modulo the group of the Generalized Characters, In 1995, N. R. Mahmood studies The Cyclic

Decomposition of the factor Group $cf(Q_{2m},Z)/R$ (G) (Q_{2m}) , In 2002, K-Sekiguchi studies Extensions and the Irreducibilies of the Induced Characters of Cyclic P-Group, In 2008, A. H. Abdul-Munem studied Artin Cokernel of The Quaternion group Q_{2m} when m is an Odd number, In 2006, A.S. Abed found the Artin characters table of dihedral group D^n when n is an odd number.

Key words: odd number, prime number, Quaternion group, *positive* integers numbers and Cyclic group

1. INTRODUCTION:

Representation Theory is a branch of mathematics that studies abstract algebra structures by Representing their elements as linear transformations of vector spaces, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in items of matrix addition and matrix multiplication ,In which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication, Moreover, representation and character theory provide applications ,no only in other branches of mathematics but also in physics and chemistry.

Fore a finite group G, The factor $\operatorname{group}^{\overline{R}}(G)$ /T(G) is called the Artin cokernel of G denoted $\operatorname{AC}(G)$, deno $\overline{R}(G)$ ted the abelian group generated by Z-valued characters of G under the operation of pointwise addition, T(G) is a subgroup of $\overline{R}(G)$ which is generated by Artin's characters.

2-Preliminars:[1]:(3,1)

The Generalized Quaternion Group Q_{2m} , For each positive integer $m{\ge}2$, The generalized Quaternion Group Q_{2m} of order

4m with two generators x and y satisfies $Q_{2m} = \{x^h \ y^k, 0 \le h \le 2m-1, k=0,1\}$ Which has the following properties $\{x^{2m} = y^4 = I, yx^my^{-1} = x^m\}$.

Let G be a finite group, all the characters of group G induced from a principal character of cyclic subgroup of G are called Artin characters of G. Artin characters of the finite group can be displayed in a table called Artin characters table of G which is denoted by Ar(G); The first row is Γ -conjugate classes; The second row is The number of elements in each conjugate class, The third row is the size of the centralized $|C_G(CL_\alpha)|$ and other rows contains the values of Artin characters.

Theorem: [2]:(3,2)

The general form of Artin characters table of Cp^s When p is a prime number and s is a positive integer number is given by:-

A	r(Cr	$^{\rm s})$
1 I	Τ(,	$\sim_{\mathbf{P}}$	')

AI(Cp')						
Γ-classes	[1]	$\left[x^{p^{s-1}}\right]$	$\left[x^{p^{s-2}}\right]$	$\left[x^{p^{s-3}}\right]$		$\begin{bmatrix} x \end{bmatrix}$
$ CL_{\alpha} $	1	1	1	1		1
$\left C_{p^s}(CL_{\alpha})\right $	p^s	p^s	p^s	p^s		p^s
$arphi_1'$	p^s	0	0	0	::	0
$arphi_2'$	p^{s-1}	p^{s-1}	0	0		0
φ_3'	p^{s-2}	p^{s-2}	p^{s-2}	0		0
:	:	:	:	:	:	
$arphi_s'$	p^1	p^1	p^1	p^1	•••	0
φ'_{s+1}	1	1	1	1		1

Table (3,1)

Example : (3,3):-

We can write Artin characters table of the group C_5

 $Ar(C_5)=$

Γ- classes	[1]	[x]
$ cL\alpha $	1	1
Cc5(CLa)	5	5
φ_{1}^{\prime}	5	0
φ_{2}^{\prime}	1	1

Table (3,2)

Corollary: (3,4):[2]:

Let
$$m = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_n^{\alpha n}$$
 where g.c.d(p_i, p_j)=1, if i

 \neq j and p_i 's are primes numbers, and q_i any positive integers,

then; $Ar(C_m) = Ar(C_{P_1^{\alpha_1}}) \otimes Ar(C_{P_2^{\alpha_2}}) \otimes \cdots \otimes Ar(C_{P_n^{\alpha_n}})_{\underline{\hspace{1cm}}}$

Example (2.3.12):

Consider the cyclic group C_{18} . To find Artin characters table for it, we use corollary (3,4)_as the following $Ar(C_{90})=Ar(C_{2.3}{}^25)=Ar(C_2)\otimes Ar(C_3{}^2)$ Ar(C₅) by using theorem (3.2) to find $Ar(C_2)$ and $Ar(C_3{}^2)$ are as follows:

$$Ar(C_2)=$$

Γ- cΓ- classes	[1]	[x]
$ CL\alpha $	1	1
$ \mathrm{Cc}_2(\mathrm{CL}lpha) $	2	2
$arphi_{1}^{'}$	2	0
$arphi_{2}^{'}$	1	1

 $Ar(C_3^2)=$

Γ- classes	[1]	$[x^3]$	[x]
$ CL\alpha $	1	1	1
$ Cc_{3^2(CL\alpha)} $	3^{2}	3^{2}	3^{2}
$arphi_{1}^{'}$	3^{2}	0	0
$arphi_{2}^{'}$	3	3	0
$arphi_3^{'}$	1	1	1

Table(3,4)

Table(3,5)

A	r(\mathbf{C}	an)=
7.7	т ($\mathbf{\circ}$	90	,-

Γ-	[1]	$[x^{30}]$	$[x^{10}]$	$[x^{18}]$	[x ⁶]	$[x^2]$	$[x^{45}]$	$[x^{15}]$	[x ⁵]	[x ⁹]	$[x^3]$	[x]
classes												
$ CL\alpha $	1	2	2	2	2	2	1	2	2	2	2	2
$ Cc_{90}(CL\alpha) $	90	45	45	45	45	45	90	45	45	45	45	45
$arphi_{1}^{'}$	90	0	0	0	0	0	0	0	0	0	0	0
$arphi_{2}^{'}$	30	30	0	0	0	0	0	0	0	0	0	0
$arphi_3^{'}$	10	10	10	0	0	0	0	0	0	0	0	0
$arphi_{4}^{'}$	18	0	0	18	0	0	0	0	0	0	0	0
$arphi_{5}^{'}$	6	6	0	6	6	0	0	0	0	0	0	0
$arphi_{6}^{'}$	2	2	2	2	2	2	0	0	0	0	0	0
$arphi_{7}^{'}$	45	0	0	0	0	0	45	0	0	0	0	0
$arphi_{8}^{'}$	15	15	0	0	0	0	15	15	0	0	0	0
$arphi_{9}^{'}$	5	5	5	0	0	0	5	5	5	0	0	0
$arphi_{10}^{'}$	9	0	0	9	0	0	9	0	0	9	0	0
$arphi_{11}^{'}$	3	3	0	3	3	0	3	3	0	3	3	0
$arphi_{12}^{'}$	1	1	1	1	1	1	1	1	1	1	1	1

Table(3,6)

Theorem:(3.5):[1]:

The Artin characters table of the Quaternion group Q_{2m} when m is an odd number is given as follows:

$$Ar(Q_{2m}) =$$

$A1(\mathbf{Q}_{2m}) -$									
				Γ-Class	ses of C _{2m}				
Γ-Classes	x^{2r}				x^{2r+1}				[^y]
CL _a	1	2		2	1	2		2	2m
$ C^{Q_{2m}}(CL_{\alpha}) $	4m	2m	:	2m	4m	2m	:	2m	2
Φ_1				2.Aı	$r(C_{2m})$				0
Φ_2									0
:									:
Φ^l									0
Φ^{l+1}	m	0	:	0	m	0	:	0	1

Table (3.7)

where $0 \le r \le m-1$, l is the number of Γ -classes of C_{2m} and Φ_j are the Artin characters of the quaternion group Q_{2m} , for all $1 \le j \le l+1$

Example (2.3.14):

To construct $Ar(Q_{30})$ by using theorem(3.5):-

Ar(Q₉₀)=

Γ-	[1]	$[x^{30}]$	$[x^{10}]$	$[x^{18}]$	$[x^6]$	$[x^2]$	$[x^{45}]$	$[x^{15}]$	$[x^5]$	$[x^9]$	$[x^3]$	[x]	[Y]
classes													
$ CL\alpha $	1	2	2	2	2	2	1	2	2	2	2	2	90
$ Cc_{90}(CL\alpha) $	18	90	90	90	90	90	180	90	90	90	90	9	2
	0											0	
Φ_1													0
Φ_2													0
Φ_3													0
Φ_4													0
Φ_5													0
Φ_6						2.Ar(C_{90})						0
Φ_7													0
Φ_8													0
Φ_9													0
Φ_{10}													0
Φ_{11}													0
Φ_{12}													0
Φ_{13}	45	0	0	0	0	0	45	0	0	0	0	0	1

Γ-	[1]	$[x^{30}]$	$[x^{10}]$	$[x^{18}]$	[x ⁶]	[x ²]	$[x^{45}]$	$[x^{15}]$	[x ⁵]	[x ⁹]	$[x^3]$	[x]	[y]
classes													
$ CL\alpha $	1	2	2	2	2	2	1	2	2	2	2	2	90
$ Cc_{90} ^{(CLa)}$	180	90	90	90	90	90	180	90	90	90	90	90	2
Φ_1	180	0	0	0	0	0	0	0	0	0	0	0	0
Φ_2	60	60	0	0	0	0	0	0	0	0	0	0	0
Φ_3	20	20	20	0	0	0	0	0	0	0	0	0	0
Φ_4	36	0	0	36	0	0	0	0	0	0	0	0	0
Φ_5	12	12	0	12	12	0	0	0	0	0	0	0	0
Φ_6	`4	4	4	4	4	4	0	0	0	0	0	0	0
Φ ₇	90	0	0	0	0	0	90	0	0	0	0	0	0
Φ_8	30	30	0	0	0	0	30	30	0	0	0	0	0
Φ_9	10	10	10	0	0	0	10	10	10	0	0	0	0
Φ_{10}	18	0	0	18	0	0	18	0	0	18	0	0	0
Φ_{11}	6	6	0	6	6	0	6	6	0	6	6	0	0
Φ_{12}	2	2	2	2	2	2	2	2	2	2	2	2	0
Φ_{13}	45	0	0	0	0	0	45	0	0	0	0	0	1

Table (3.8)

Theorem(3,8): [4]

Let H be a cyclic subgroup of G and h_1, h_2, \ldots, h_m are chosen representatives for the m-conjugate classes of H contained in CL(g) in G, then:

$$\phi'(g) = \begin{cases} \frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if} \quad h_{i} \in H \cap CL(g) \\ 0 & \text{if} \quad H \cap CL(g) = \phi \end{cases}$$

Proposition(3,9)./3/

The number of all distinct Artin characters on group G is equal to the number of Γ -classes on G. Furthermore, Artin characters are constant on each Γ -classes.

3. THE MAIN RESULTS:

In this section we give the general form of Artin's characters table of the group $(Q_{2m}\times C_5)$, When $m=p_1^{s_1}.p_2^{s_2},g.c.d(p_1,p_2)=1,p_1,p_2>2$, p_1,p_2 are primes numbers and s_1,s_2 are a positive integers numbers. The group $(Q_{2m}\times C_5)$ is the direct product group of the quaternion group Q_{2m} of order 4m and the cyclic group C_5 of order 5, then the order of The group $(Q_{2m}\times C_5)$ is 20m

Example (4.1):

Let $m=3^2.5$ then $(Q_{2m}\times C_5)=(Q_{2.45}\times C_5)=(Q_{2.3}^2.5\times C_5)=\{(1,I), (1,z), (1,z^2), (1,z^3), (1,z^4), (x,I), (x,z), (x,z^2), (x,z^3), (x,z^4), (x^2,I), (x^2,z), (x^2,z^2), (x^2,z^3), (x^2,z^4), ..., (x^{89},I), (x^{89},z), (x^{89},z^2), (x^{89},z^3), (x^{89},z^4), (y,I), (y,z), (y,z^2), (y,z^3), (y,z^4), (xy,I), (xy,z), (xy,z^2), (xy,z^3), (xy,z^4), (x^2y,I), (x^2y,z), (x^2y,z^2), (x^2y,z^3), (x^2y,z^4),..., (x^{89}y,I), (x^{89}y,z), (x^{89}y,z^2), (x^{89}y,z^3), (x^{89}y,z^4) \}.to find Artin's characters for this group, there are$ **26**cyclic subgroups, which are:

<1.J>.<x³⁰.J>.<x¹⁰.J>.<x¹⁸.J>.<x⁶.J>.<x².J>.<x⁴⁵.J>.<x¹⁵.J>.<x⁵.J>.< $x^9,I> < x^3,I> < x,I> < y,I> < 1,z> < x^{30},z> < x^{10},z> < x^{18},z> < x^6,z> < x^2,z$ >,<x⁵⁴,z>,<x¹⁵,z>,<x⁵,z>,<x⁹,z>,<x³,z>,<x,z>,<y,z>,then there are 26 Γ-Classes, we have 26 distinct Artin's characters, Let $g \in (Q_{10} \times C_5), g = (q, I) \text{ or } g = (q, z), q \in Q_{10} z \in C_5 \text{ and let } \varphi$ the principal character of H, Φ_j Artin characters of Q_{10} , $1 \le j \le 13$, then by using theorem (3,8):

$$= \begin{cases} & \frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if} \quad h_{i} \in H \cap CL(g) \\ & \\ & 0 & \text{if} \quad H \cap CL(g) = \phi \end{cases}$$

$$\bigoplus_{i \in G} \left(\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi(h_{i}) \right) = 0$$

Case (I): If H is a cyclic subgroup of $(Q_{2m} \times \{I\})$, then:

$$H_1 = <1, I>$$
, If $g=(1, I)$

Otherwise
$$\Phi_{(1,1)}(g)=0$$

since
$$H \cap CL(g) = \phi$$

H₂=<
$$\mathbf{x}^{30}$$
,I> ,If \mathbf{g} =(1,I) , Φ (2,1)(\mathbf{g})= $\frac{|C_{Q_{90}} \times C_{5}(\mathbf{g})|}{|C_{H}(\mathbf{g})|}$ \mathcal{P} (\mathbf{g}) = $\frac{900}{3}$. 1 = 300 = 5.60 =

5.
$$\Phi_2(1)$$
 since H \cap CL(g)={ (1,I)} and φ (g)=1

$$\text{If } g = (x^{30}, I) \ , \ \Phi_{(2,1)}((x^{30}, I)) = \frac{|\mathcal{C}_{Q_{90} \times \mathcal{C}_5}(g)|}{|\mathcal{C}_H(g)|} (\mathcal{O}(g) \ + \mathcal{O}(g^{-1}) = \frac{450}{3} (1+1) = 300 = 5.60 = 100$$

5.
$$\Phi_2$$
 (x³⁰)

since
$$H \cap CL(g)=\{(g,g^{-1})\}$$
 and

5.
$$\Phi_{2}$$
 (x³⁰) since H | CL(g)={ (g,g¹} and $\Phi_{(g)} = \Phi_{(g^{-1})=1}$, Otherwise $\Phi_{(2,1)}$ (g)= 0 since H | CL(g)={ (g,g¹} and $\Phi_{(2,1)} = \Phi_{(2,1)} = 0$ (L(g) = $\Phi_{(3,1)} = \Phi_{(3,1)} = \Phi_{(3,1)}$

$$(g)) = \frac{900}{9}.1 = 100 = 5.20 = 5.0 - 3 (1) \text{ since } H \cap CL(g) = \{ (1,I) \} \text{ and } \mathscr{O}_{(g)} = 1$$

If g=(x^{10},I),
$$\Phi_{(3,1)}((x^{10},I)) = \frac{|C_{Q_{90} \times C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{9} (1+1) = 100 = 5.20 = 100$$

5.
$$\phi_3$$
 (x10)since H \bigcap CL(g)={ g,g-1} and φ (g)= φ (g1)=1

If
$$g=(x^{30}, I)$$
, $\Phi_{(3,1)}((x^{30}, I)) = \frac{|C_{Q_{90} \times C_5}(g)|}{|C_H(g)|} (\mathcal{P}_{(g)} + \mathcal{P}_{(g^{-1})}) = \frac{450}{9} (1+1) = 100 = 5.20 = 5$. $\mathcal{P}_{2}(x^{30})$

since H
$$\cap$$
 CL(g)={ g,g-1} and φ (g)= φ (g-1)=1, Otherwise Φ _(3,1) (g)= 0 since H \cap CL(g) = ϕ

$$\begin{aligned} &\text{H}_{10} = & < x^9, \text{I>}, & \text{If} & \text{g} = (1, \text{I}), & \Phi_{(10,1)}((1, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O} \\ &\text{(g))} = \frac{900}{10}, 1 = 90 = 5.18 = 5. \, \mathcal{O}_{10}(1) & \text{since } H \cap \text{CL}(g) = \{ (1, \text{I}) \} & \text{and } \mathscr{O}(g) = 1 \end{aligned} \\ &\text{If } g = (x^{18}, \text{I}), & \Phi_{(10,1)}((x^{18}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O} (g) + \mathscr{O}(g^{-1})) = \frac{450}{10}(1+1) = 90 = 5.18 = 5. \, \mathcal{O}_{10}(x^{18}) & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{If } g = (x^{45}, \text{I}), & \Phi_{(10,1)}((x^{45}) \text{ since } H \cap \text{CL}(g) = \{ (x^{45}, \text{I}) \} & \text{and } \mathscr{O}(g) = 1 \end{aligned} \\ &\text{If } g = (x^{9}, \text{I}), & \Phi_{(10,1)}((x^{9}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O}(g) + \mathscr{O}(g^{-1})) = \frac{450}{10}(1+1) = 90 = 5.18 = 5. \, \mathcal{O}_{10}(x^{3}) & \text{since } H \cap \text{CL}(g) = \{ (x^{45}, \text{I}) \} & \text{and } \mathscr{O}(g) = 1 \end{aligned} \\ &\text{If } g = (x^{9}, \text{I}), & \Phi_{(10,1)}((x^{9}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O}(g) + \mathscr{O}(g^{-1})) = \frac{450}{10}(1+1) = 90 = 5.18 = 5. \, \mathcal{O}_{10}(x^{3}) & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{Otherwise } \Phi_{(10,1)}(g) = 0 & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{Otherwise } \Phi_{(10,1)}(g) = 0 & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{If } g = (x^{30}, \text{I}), & \Phi_{(11,1)}((x^{30}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O}(g) + \mathscr{O}(g^{-1})) = \frac{450}{30}(1+1) = 30 = 5.6 = 5. \, \mathcal{O}_{11}(x^{30}) & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{If } g = (x^{18}, \text{I}), & \Phi_{(11,1)}((x^{18}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O}(g) + \mathscr{O}(g^{-1})) = \frac{450}{30}(1+1) = 30 = 5.6 = 5. \, \mathcal{O}_{11}(x^{45}) & \text{since } H \cap \text{CL}(g) = \{ g, g^{-1} \} & \text{and } \mathscr{O}(g) = \mathscr{O}(g^{-1}) = 1 \end{aligned} \\ &\text{If } g = (x^{45}, \text{I}), & \Phi_{(11,1)}((x^{45}, \text{I})) = \frac{|\mathcal{C}_{Q_{00} \times C_5}(g)|}{|\mathcal{C}_{R}(g)|} (\mathscr{O}(g) + \mathscr{O}(g^{-1})) =$$

$$\begin{array}{lll} \mathrm{H}_{12} &=& \langle \mathbf{x}, \mathbf{I} \rangle, & \mathrm{if} & \mathrm{g} = (1, \mathbf{I}) & , \Phi_{(12,1)}((1, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g)) - \frac{900}{90}.1 = 10 = 5.2 = 5. \, \Phi_{12} \ (1) & \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{\ (1, \mathbf{I})\} \ \mathrm{and} \ \mathcal{O}(g) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{30}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{30}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{30}) \ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{10}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{30}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{10}) \ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{18}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{18}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{18}) \ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{6}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{6}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{6}) \ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{2}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{2}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{45}) \\ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{if} & \mathrm{g} = (\mathbf{x}^{45}, \mathbf{I}), \ \Phi_{(12,1)}((\mathbf{x}^{45}, \mathbf{I})) = \frac{|\mathcal{C}_{Q_{00}} \times \mathcal{C}_{S}(g)|}{|\mathcal{C}_{H}(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{90} (1 + 1) = 10 = 5.2 = 5. \, \Phi_{12} \ (\mathbf{x}^{45}) \\ \mathrm{since} \ \mathrm{H} \ \cap \ \mathrm{CL}(g) = \{ \mathbf{g}, \mathbf{g}^{-1} \} \ \mathrm{and} \ \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1 \\ \mathrm{i$$

If
$$g=(x^{15}, D)$$
, $\Phi_{(13,1)}((-x^{15}-, I)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g)) = \frac{900}{4}.1 = 225 = 5.45 = 5.\Phi_{13} \quad (x^{15})$ since $H \cap CL(g) = \{(-x^{15}-, I)\}$ and $\mathcal{P}(g) = 1$ If $g=(y, I)$, $\Phi_{(13,1)}(y, I) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g)) + \mathcal{P}(g^{-1}) = \frac{10}{4}(1+1) = 5 = 5.1 = 5.\Phi_{13}(g)$ since $H \cap CL(g) = \{(-x^{-1}-, I)\}$ and $\mathcal{P}(g) = (-x^{-1}-, I)$ of therwise $\Phi_{(13,1)}(g) = 0$ since $H \cap CL(g) = \{(-x^{-1}-, I)\}$ since $H \cap CL(g) = \{(-x^{-1}-, I)\}$ since $H \cap CL(g) = \{(-x^{-1}-, I)\}$ and $\mathcal{P}(g) = 1$ if $g=(1, I)$, $\Phi_{(1,2)}((1, I)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|} \varphi((1, I)) = \frac{900}{5}.1 = 180 = \Phi_1(1)$, since $H \cap CL(g) = \{(-x^{-1}-, I)\}$ since

If
$$g=(x^{10},I)$$
, $\Phi_{(3,2)}((x^{10},I)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{45} (1+1) = 20 = \Phi_3$
 $(x^{10}) \text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
If $g=(x^{10},z)$, $\Phi_{(3,2)}((x^{10},z)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{9} (1+1) = 20 = \Phi_3$
 $(x^{10}) \text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
Otherwise $\Phi_{(3,2)}(g) = 0$ since $H \cap CL(g) = \phi$
 $H_4 = \langle x^{18}, z \rangle$, If $g=(1,1)$, $\Phi_{(4,2)}((1,1)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g)) = \frac{900}{25}, 1 = 36 = \Phi_4 (1)$ since $H \cap CL(g) = \{1,1\}$ and $\mathcal{O}(g) = 1$
If $g=(1,z)$, $\Phi_{(4,2)}((1,z)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g)) = \frac{900}{25}, 1 = 36 = \Phi_4 (1)$ since $H \cap CL(g) = \{1,2\}$ and $\mathcal{O}(g) = 1$
If $g=(x^{18},1)$, $\Phi_{(4,2)}((x^{18},1)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{25} (1+1) = 36 = \Phi_4 (x^{18})$
since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
If $g=(x^{18},2)$, $\Phi_{(4,2)}((x^{18},2)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{25} (1+1) = 36 = \Phi_4 (x^{18})$
since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
If $g=(x^{18},2)$, $\Phi_{(4,2)}((x^{18},2)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{25} (1+1) = 36 = \Phi_4 (x^{18})$
since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
Otherwise $\Phi_{(4,2)}(g) = 0$ since $H \cap CL(g) = \phi$
 $H_5 = \langle x^6, z \rangle$, If $g=(1,1)$, $\Phi_{(5,2)}((1,1)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g)) = \frac{900}{75}, 1 = 12 = \Phi_5 (1)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = 1$
If $g=(x^{10},1)$, $\Phi_{(5,2)}((x^{30},1)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g)) = \frac{900}{75}, 1 = 12 = \Phi_5 (1)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = \frac{450}{75} (1+1) = 12 = \Phi_5 (x^{30})$
since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$
If $g=(x^{15},1)$, $\Phi_{(5,2)}((x^{18},1)) = \frac{|C_{000} \times c_5|(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) =$

If
$$g=(x^{0},z)$$
, $\Phi_{(5,2)}((x^{0},z)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{75} (1+1) = 12 = \Phi_{5}(x^{0})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

Otherwise $\Phi_{(5,2)}(g) = 0$ since $H \cap CL(g) = \Phi$
 $H_{6} = \langle x^{2}, z \rangle$, If $g=(1,1)$, $\Phi_{(6,2)}((1,1)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g)) = \frac{900}{225} 1 = 4 = \Phi_{6}(1)$ since $H \cap CL(g) = \{g,1,1\}$ and $\mathcal{P}(g) = 1$

If $g=(1,z)$, $\Phi_{(6,2)}((1,z)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g)) = \frac{900}{225} 1 = 4 = \Phi_{6}(1)$ since $H \cap CL(g) = \{(1,z)\}$ and $\mathcal{P}(g) = 1$

If $g=(x^{30},1)$, $\Phi_{(6,2)}((x^{30},1)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{30})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{30},z)$, $\Phi_{(6,2)}((x^{30},z)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{30})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{10},1)$, $\Phi_{(6,2)}((x^{10},1)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{10})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{10},1)$, $\Phi_{(6,2)}((x^{10},2)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{10})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18},1)$, $\Phi_{(6,2)}((x^{10},2)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{10})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18},2)$, $\Phi_{(6,2)}((x^{18},2)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{10})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18},2)$, $\Phi_{(6,2)}((x^{18},2)) = \frac{|C_{Q_{00}} \times C_{5}(g)|}{|C_{R}(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{225} (1+1) = 4 = \Phi_{6}(x^{10})$ s

$$\begin{split} & \text{H}_{7} = \langle x^{45}, z \rangle, & \text{ If } g = (1, 1), \Phi_{(7,2)}((1, 1)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{10} 1 = 90 = \varPhi_7(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 1) \} & \text{and } \mathscr{P}(g) = 1 \\ & \text{If } g = (1, z), \Phi_{(7,2)}((1, z)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{10}.1 = 90 = \varPhi_7(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, z) \} & \text{ and } \mathscr{P}(g) = 1 \\ & \text{If } g = (x^{45}, 1), \Phi_{(7,2)}((x^{45}, 1)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{10}.1 = 90 = \varPhi_7(x^{45}) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (x^{45}, 1) \} & \text{ and } \mathscr{P}(g) = 1 \\ & \text{If } g = (x^{45}, z), \Phi_{(7,2)}((x^{45}, z)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{10}.1 = 90 = \varPhi_7(x^{45}) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (x^{45}, z) \} & \text{ and } \mathscr{P}(g) = 1 \\ & \text{Otherwise } \Phi_{(7,2)}(g) = 0 & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 1), \Phi_{(8,2)}((1, 1)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 1), \Phi_{(8,2)}((1, z)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 1), \Phi_{(8,2)}((1, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 2), \Phi_{(8,2)}((1, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 2), \Phi_{(8,2)}((1, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(1) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (1, 2), \Phi_{(8,2)}((1, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(x^{45}) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (x^{45}, 1), \Phi_{(8,2)}((1, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(x^{45}) & \text{ since } \\ & \text{H} \cap \text{CL}(g) = \{ (x^{45}, 1) \} & \text{ and } \mathscr{P}(g) = 1 \\ & \text{If } g = (x^{45}, 2), \Phi_{(8,2)}((x^{45}, 2)) = \frac{|C_{Q_{00} \times C_5}(g)|}{|C_H(g)|}(\mathscr{P}(g)) = \frac{900}{30}.1 = 30 = \varPhi_8(x^{45}) & \text{ since } \\$$

If
$$g=(1,z)$$
, $\Phi_{(0,2)}((1,z))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g))=\frac{900}{90}1=10\,\Phi_9(1)$ since $H\cap CL(g)=\{(1,z)\}$ and $\mathcal{O}(g)=1$ If $g=(x^{30},\mathbb{D})$, $\Phi_{(0,2)}((x^{30},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{30})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{30},z)$, $\Phi_{(0,2)}((x^{30},z))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{30})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{10},\mathbb{D})$, $\Phi_{(0,2)}((x^{10},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{10})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{10},z)$, $\Phi_{(0,2)}((x^{10},z))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{10})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{45},\mathbb{D})$, $\Phi_{(0,2)}((x^{45},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g))=\frac{900}{90}.1=10=\Phi_9(x^{45})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=1$ If $g=(x^{45},\mathbb{D})$, $\Phi_{(0,2)}((x^{45},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g))=\frac{900}{90}.1=10=\Phi_9(x^{45})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=1$ If $g=(x^{45},\mathbb{D})$, $\Phi_{(0,2)}((x^{45},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g))=\frac{900}{90}.1=10=\Phi_9(x^{45})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{15},\mathbb{D})$, $\Phi_{(0,2)}((x^{15},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{15})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{5},\mathbb{D})$, $\Phi_{(0,2)}((x^{5},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{5})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{5},\mathbb{D})$, $\Phi_{(0,2)}((x^{5},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|}{|C_R(g)|}(\mathcal{O}(g)+\mathcal{O}(g^{-1}))=\frac{450}{90}(1+1)=10=\Phi_9(x^{5})$ since $H\cap CL(g)=\{g,g^{-1}\}$ and $\mathcal{O}(g)=\mathcal{O}(g^{-1})=1$ If $g=(x^{5},\mathbb{D})$, $\Phi_{(0,2)}((x^{5},\mathbb{D}))=\frac{|C_{Q_{00}\times C_5}(g)|$

If
$$g=(x^{18}, I)$$
, $\Phi_{(10,2)}((x^{18}, I)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^{18}, s)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18}, z)$, $\Phi_{(10,2)}((x^{18}, z)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^{18}, z)$, $\Phi_{(10,2)}((x^{18}, z)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^{18}, z)$, $\Phi_{(10,2)}((x^{18}, z)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g)) = \frac{900}{50}.1 = 18 = \Phi_{10} (x^{45}, z)$ since $H \cap CL(g) = \{(x^{45}, z)\}$ and $\mathcal{P}(g) = 1$

If $g=(x^{45}, z)$, $\Phi_{(10,2)}((x^{45}, z)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^{45})$ since $H \cap CL(g) = \{(x^{45}, z)\}$ and $\mathcal{P}(g) = 1$

If $g=(x^3, I)$, $\Phi_{(10,2)}((x^9, I)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^9)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^3, z)$, $\Phi_{(10,2)}((x^9, z)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{50} (1+1) = 18 = \Phi_{10} (x^9)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

Otherwise $\Phi_{(10,2)}(g) = 0$ since $H \cap CL(g) = \Phi$
 $H_{11} = \langle x^3, z \rangle$, If $g=(1, I)$, $\Phi_{(11,2)}((1, I)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g)) = \frac{900}{150}.1 = 6 = \Phi_{11} (1)$ since $H \cap CL(g) = \{(I, I)\}$ and $\mathcal{P}(g) = 1$

If $g=(x^{30}, I)$, $\Phi_{(11,2)}((x^{30}, I)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{150} (1+1) = 6 = \Phi_{11} (x^{30})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18}, I)$, $\Phi_{(11,2)}((x^{18}, I)) = \frac{|C_{Q_{00}} x_{C_5}(g)|}{|C_H(g)|} (\mathcal{P}(g) + \mathcal{P}(g^{-1})) = \frac{450}{150} (1+1) = 6 = \Phi_{11} (x^{18})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{P}(g) = \mathcal{P}(g^{-1}) = 1$

If $g=(x^{18}, I)$, $\Phi_{(11,2)}((x^{18}, I)) = \frac{|C_{Q_{00}} x$

If
$$g=(x^6,z)$$
, $\Phi_{(11,2)}((x^6,z)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^6)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^{45},1)$, $\Phi_{(11,2)}((x^{45},1)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) = \frac{900}{150}.1 = 6 = \Phi_{11}(x^{45})$ since $H \cap CL(g) = \{(x^{45},1)\}$ and $\mathcal{O}(g) = 1$ If $g=(x^{45},z)$, $\Phi_{(11,2)}((x^{45},z)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) = \frac{900}{150}.1 = 6 = \Phi_{11}(x^{45})$ since $H \cap CL(g) = \{(x^{45},z)\}$ and $\mathcal{O}(g) = 1$ If $g=(x^{15},1)$, $\Phi_{(11,2)}((x^{15},1)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g) = \frac{900}{150}.1 = 6 = \Phi_{11}(x^{45})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^{15},2)$, $\Phi_{(11,2)}((x^{15},2)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^9)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^0,1)$, $\Phi_{(11,2)}((x^0,1)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^9)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^3,1)$, $\Phi_{(11,2)}((x^3,1)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^9)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^3,1)$, $\Phi_{(11,2)}((x^3,1)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^3)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ If $g=(x^3,2)$, $\Phi_{(11,2)}((x^3,2)) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) + \mathcal{O}(g^{-1}) = \frac{450}{150}(1+1) = 6 = \Phi_{11}(x^3)$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ Otherwise $\Phi_{(11,2)}(g) = 0$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$ Otherwise $\Phi_{(11,2)}(g) = \frac{|C_{Q_{00} \times C_2}(g)|}{|C_R(g)|}$ ($\mathcal{O}(g) = \frac{900}{450}.1 = 2 = \Phi_{12}(1)$ since $\mathcal{O}(g) = 1$ if $\mathcal{O}(g) = 1$ if $\mathcal{O}(g) = 1$ if $\mathcal{O}(g$

If
$$g=(x^{10}, I)$$
, $\Phi_{(12,2)}((x^{30}, I)) = \frac{|C_{Q_{00}\times C_1}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^{10})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{10}, z)$, $\Phi_{(12,2)}((x^{30}, z)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^{10})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{18}, I)$, $\Phi_{(12,2)}((x^{18}, I)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^{18})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{18}, z)$, $\Phi_{(12,2)}((x^{18}, z)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^{18})$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^6, I)$, $\Phi_{(12,2)}((x^6, I)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^6)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^6, z)$, $\Phi_{(12, 2)}((x^6, z)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^6)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^6, z)$, $\Phi_{(12, 2)}((x^6, z)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^6)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^6, z)$, $\Phi_{(12, 2)}((x^6, z)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^2)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^4, I)$, $\Phi_{(12, 2)}((x^4, I)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450} (1+1) = 2 = \Phi_{12}(x^4)$ since $H \cap CL(g) = \{g, g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^4, I)$, $\Phi_{(12, 2)}((x^4, I)) = \frac{|C_{Q_{00}\times C_2}(g)|}{|C_H(g)|} (\mathcal{O}(g)) = \frac{900}{450} (1) = 2 = \Phi_{12}(x^4, I)$ since $H \cap CL(g) = \{g, g^{-1}\}$ an

If
$$g=(x^{9},I)$$
, $\Phi_{(12,2)}((x^{9},I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{9})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{3},z)$, $\Phi_{(12,2)}((x^{3},z)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{9})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{3},I)$, $\Phi_{(12,2)}((x^{3},I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{3})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x^{3},z)$, $\Phi_{(12,2)}((x^{3},z)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{3})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x,I)$, $\Phi_{(12,2)}((x,I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{3})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x,I)$, $\Phi_{(12,2)}((x,I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{3})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

If $g=(x,I)$, $\Phi_{(12,2)}((x,I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{450}{450}(1+1) = 2 = \Phi_{12} \quad (x^{3})$ since $H \cap CL(g) = \{g,g^{-1}\}$ and $\mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$

Otherwise $\Phi_{(12,2)}(g) = 0$ since $H \cap CL(g) = \Phi$
 $H_{13} = \langle y, I \rangle$, If $g=(1,I)$, $\Phi_{(13,2)}((1,I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g)) = \frac{900}{20}.1 = 45 = \Phi_{13} \quad (1)$ since $H \cap CL(g) = \{(1,I)\}$ and $\mathcal{O}(g) = 1$

If $g=(x^{4},I)$, $\Phi_{(13,2)}((x^{45},I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g)) = \frac{900}{20}.1 = 45 = \Phi_{13} \quad (x^{45})$ since $H \cap CL(g) = \{(x^{45},I)\}$ and $\mathcal{O}(g) = 1$

If $g=(x^{15},I)$, $\Phi_{(13,2)}((x^{15},I)) = \frac{|C_{Q_{00}\times C_{2}}(g)|}{|C_{H}(g)|}(\mathcal{O}(g)) = \frac{900}{20}.1 = 45 = \Phi_{13} \quad (x^{45})$ since $H \cap CL(g) = \{g,$

$Ar(\Phi_{90} \times C_5) =$

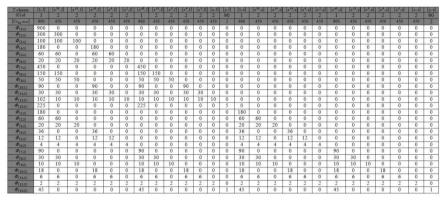


Table (4.1)

Theorem (4,2):-

The Artin's character table of the group $(Q_{2m} \times C_5)$ where $m = p_1^{s_1} \cdot p_2^{s_2}, p_1, p_2 > 2$, p_1, p_2 are primes numbers and s_1, s_2 are a positive integers numbers; is given as follows:_

$Ar(Q_{2m}X \times C_5) =$

				Γ-Clas	ses of (Q2m×{	1}		Γ-Classes of Q2m×{z}									
Γ-Classes		$[x^{2r}, I]$ $[x^{2r+1}, I]$ $[y, I]$									$[x^2]$	r,z]		$[x^{2r+1},z]$				[y,z]
$ CL_a $	1	1 2 2 1 2 2 2m							1	2		2	1	2		2	2m	
Q _{2m} ×C ₅ (CL _a)	20m	10m		10m	20m	10m		10m	10	20m	10m		10m	20m	10m		10m	10
Φ _(2,1) : : : : Φ ₍₍₁₎ Φ _{((-2,1)}				5 A	Ar(Ç) _{2m})								0				
Φ _(1,1)				Α	1 (Q	_{2m})							A	r(Q ₂	(m)			

Table (4.2)

Which is $[4(s_1+1)(s_2+1)+2]\times[4(s_1+1)(s_2+1)+2]$ matrix suquer. where $0 \le r \le m-1$, l is the number of Γ -classes of C_{2m} and Φ_j are the Artin characters of the quaternion group Q_{2m} , for all $1 \le j \le l+1$.

Proof:-

Let $g \in (Q_{2m} \times C_5)$; g=(q,I) or g=(q,z), $q \in Q_{2m},I,z \in C_5$

Case (I): If H is a cyclic subgroup of $(Q_{2m} \times \{I\})$, then:

$$_{1-H=}\langle (x,I)\rangle$$
 $_{2-H=}\langle (y,I)\rangle$

and φ the principal character of H, Φ_j Artin characters of Q_{2m} , then $1 \le j \le l+1$ by using theorem (3,8):

$$\Phi_{j}(g) = \begin{cases}
\frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if} \quad h_{i} \in H \cap CL(g) \\
0 & \text{if} \quad H \cap CL(g) = \phi
\end{cases}$$

(i) If
$$g = (1,I)$$
, $\Phi_{(j,1)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_Q)}|}{|c_H(g)|} \varphi((1,I)) = \frac{20m}{|c_H((I,1))|}.1$
= $\frac{5|Q_{2m}(1)|}{|c_{<<>}(1)|} = 5 \Phi_j(1)$ since $H \cap CL(1,I) = \{(1,I)\}$ and $\varphi(g) = 1$

(ii) If
$$g = (x^m, I), g \in H$$

$$\Phi_{(j,1)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_{Q})}|}{|c_H(g)|} \varphi(g) = \frac{20m}{|c_H(x^m,1)|} \cdot 1 = \frac{5|Q_{2m}(x^m)|}{|c_{}(x^m)|} \cdot 1 = 5 \Phi_j(x^m) \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$$

(iii) If
$$g^{\neq}$$
 (x^{m} , I) and $g \in H$, $\Phi_{(j,1)}(g) = \frac{|C_{Q_{2m} \times C_{5}(CL_{Q})}|}{|C_{H}(g)|}$ (φ (g) + φ (g·1) = $\frac{10m}{|C_{H}(g)|}$ (1 + 1) = $\frac{20m}{|C_{H}(g)|}$ = $\frac{5|Q_{2m}(q)|}{|C \times x > (q)|}$ = $5^{\Phi_{j}}(q)$ since H \rightharpoonup CL(g)=\{g,g^{-1}\}, g=(q,I), q \in Q_{2m}, q\neq x^{m} and \varphi(g)=\varphi(g)=\varphi(g^{-1})=1

(iv) If
$$\mathbf{g}^{\notin} \mathbf{H}$$
, $\Phi_{(j,1)}(\mathbf{g}) = 0 = 5$. $0 = 5^{\Phi_j}(q)$ since $\mathbf{H} \cap \mathrm{CL}(\mathbf{g}) = \phi$ and $\mathbf{q} \in \mathbf{Q}_{2m}$

2-IF
$$H = \langle (y,I) \rangle = \{(1,I),(y,I),(y^2,I),(y^3,I)\}$$

(i) If
$$g = (1,I)$$
, $\Phi^{(l+1,1)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(g)|} \mathcal{O}(g) = \frac{20m}{4}.1 = 5.m = 5\Phi_j(1)$
since $H \cap CL(1,I) = \{(1,I)\} \text{ and } \mathcal{O}(g) = 1$

(ii) If
$$g = (x^m, I) = (y^2, I)$$
 and $g \in H$, $\Phi^{(l+1,1)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_Q)}|}{|c_H(g)|} \varphi$
(g) $= \frac{20m}{4} \cdot 1 = 5 \cdot m = 5 \varphi_{(i+1)}(x^m)$ since $H \cap CL(g) = \{g\}$ and $\varphi(g) = 1$

(ii) If
$$g^{\neq}$$
 (x^m ,I) and $g \in H$, i.e. $\{g = (y,I) \text{ or } g = (y^3,I)\}$

$$\Phi^{(l+1,1)}(g) = \frac{|c_{Q_{2m}} \times c_5(CL_Q)|}{|c_H(g)|} (\mathcal{O}(g) + \mathcal{O}(g^{-1})) = \frac{10}{4} (1+1) = \frac{20}{4} = 5.1 = 5$$

$$5 \Phi_{(i,1)}(y) \text{ since } H \cap CL(g) = \{g,g^{-1}\} \text{ and } \mathcal{O}(g) = \mathcal{O}(g^{-1}) = 1$$

Otherwise
$$\Phi^{(l+1,1)}(g)=0$$
 since $H \cap CL(g)=\phi$

Case (II):

If H is a cyclic subgroup of $(Q_{2m} \times \{z\})$ then:

$$_{1-\mathrm{H}=}\langle (x,z)\rangle$$
 $_{2-\mathrm{H}=}\langle (y,z)\rangle$

and φ the principal character of H, Φ_j Artin characters of Q_{2m} , then $1 \le j \le l+1$ by using theorem (3,8):

$$\Phi_{j}(g) = \begin{cases} \frac{\left|C_{G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{m} \varphi(h_{i}) & \text{if} \quad h_{i} \in H \cap CL(g) \\ 0 & \text{if} \quad H \cap CL(g) = \phi \end{cases}$$

$$_{1-H=}\langle x,z\rangle$$

(i) If
$$g = (1,I), (1,z)$$

$$\Phi_{(j,2)}(g) = \frac{|\mathcal{C}_{Q_{2m} \times \mathcal{C}_5(\mathcal{C}L_{\omega})}|}{|\mathcal{C}_H(g)|} \quad \mathcal{P}(g) = \frac{20m}{|\mathcal{C}_H((I,1))|} \cdot 1 = \frac{5|Q_{2m}(1)|}{5|\mathcal{C}_{<\times>}(1)|} \quad \mathcal{P}(1) = \Phi_{j}(1) \text{ since } H \cap CL(g) = \{(1,I),(1,z)\} \text{ and } \quad \mathcal{P}(g) = 1$$

(ii) $g = (1.I), (x^m, I)(x^m, z), (1.z) : g \in H$

If g=(1,I),(1,z),

$$\Phi_{(j,2)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(g)|} \mathcal{P}(g) = \frac{20m}{|c_H((I,1))|} \cdot 1 = \frac{5|Q_{2m}(1)|}{5|c_{}(1)|} \mathcal{P}(1) = \Phi_{i}(1) \text{ since } H \cap CL(g) = \{g\} \text{ and } \mathcal{P}(g) = 1$$

If $g=(x^m,I),(x^m,z)$

$$\Phi_{(j,2)}(\mathbf{g}) = \frac{|\mathcal{C}_{Q_{2m} \times \mathcal{C}_5(CL_{\omega})}|}{|\mathcal{C}_H(\mathbf{g})|} \mathcal{P}(\mathbf{g}) = \frac{5|Q_{2m}|(x^m)|}{5|\mathcal{C}_{<\times>}(x^m)|} \mathcal{P}(x^m) = \Phi_{\mathbf{j}}(x^m) \text{ since } \mathbf{H}$$

$$\bigcap \mathrm{CL}(\mathbf{g}) = \{\mathbf{g}\} \text{ and } \mathcal{P}(\mathbf{g}) = 1$$

(iii) If $g \neq (x^m, I)$, (x^m, z) and, $g \in H$

$$\begin{split} &\Phi_{(j,2)}(\mathbf{g}) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(\mathbf{g})|} = (\mathcal{P}(\mathbf{g}) + \mathcal{P}(\mathbf{g}^{-1}) = \frac{10}{|c_H(\mathbf{g})|} (1+1) = \\ &\frac{5|Q_{2m}(\mathbf{q})|}{5|c_{<\mathbf{x}>q}(\mathbf{q})|} \mathcal{P}(\mathbf{q}) = \Phi_{\mathbf{j}}(\mathbf{q}) \quad \text{since} \quad H \cap \mathrm{CL}(\mathbf{g}) = \{\mathbf{g}, \mathbf{g}^{-1}\}, \mathcal{P}(\mathbf{g}) = \mathcal{P}(\mathbf{g}^{-1}) = 1 \\ &\text{and } \mathbf{g} = (\mathbf{q}, \mathbf{z}), \mathbf{q} \in \mathrm{Q}_{2m} \quad : q \neq x^m \text{ and } \mathcal{P}(\mathbf{g}) = \mathcal{P}(\mathbf{g}^{-1}) = 1 \end{split}$$

(iv) If
$$g \notin H$$
, $\Phi_{(j,2)}(g)=0=\Phi_j(q)$ since $H \cap CL(g)=\phi$ and $q \in Q_{2m}$

2-IF H =
$$\langle y,z \rangle = \{(1,I),(y,I),(y^2,I),(y^3,I),(1,z),(y,z),(y^2,z),(y^3,z) (1,z^2),(y,z^2),(y^2,z^2), (y^3,z^2) (1,z^3),(y,z^3), (y^2,z^3),(y^3,z^3), (1,z^4),(y^2,z^4),(y^3,z^4)\}$$

(i) If g = (1,I), (1,z)

$$\Phi^{(l+1,2)}(\mathbf{g}) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(\mathbf{g})|} \mathcal{P}(\mathbf{g}) = \frac{20m}{20}. \ 1 = m = \Phi^{l+1}(\mathbf{g}) \text{ since } \mathbf{H} \cap \mathbf{CL}(\mathbf{g}) = \mathbf{g} \text{ and } \mathcal{P}(\mathbf{g}) = 1$$

(ii) If
$$g=(y^2,I) = (x^m,I), (y^2,z), (y^2,z^2), (y^2,z^3), (y^2,z^4)$$
 and $g \in H$

$$\Phi^{(l+1,2)}(g) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(g)|} \varphi(g) = \frac{20m}{20}. 1 = m = \Phi^{l+1}(g) \quad \text{since } H$$

$$\bigcap CL(g) = \{g\} \text{and } \varphi(g) = 1$$

(ii) If
$$g^{\neq}$$
 (χ^{m} , I) and $g \in H$ i.e $g = \{ (y,I), (y, z), (y, z^{2}), (y,z^{3}), (y,z^{4}) \}$ or $g = (y^{3},I), (y^{3},z), (y^{3},z^{2}), (y^{3},z^{3}), (y^{3},z^{4}) \}$

$$\Phi^{(l+1,2)}(\mathbf{g}) = \frac{|c_{Q_{2m} \times C_5(CL_{\omega})}|}{|c_H(\mathbf{g})|} = (\mathcal{P}(\mathbf{g}) + \mathcal{P}(\mathbf{g}^{-1})) = \frac{10}{20}(1+1) = 1 = \Phi_{(i,1)}(y) \text{ since } \mathbf{H} \cap \mathrm{CL}(\mathbf{g}) = \{\mathbf{g}, \mathbf{g}^{-1}\} \text{ and } \mathcal{P}(\mathbf{g}) = \mathcal{P}(\mathbf{g}^{-1}) = 1$$

Otherwise
$$\Phi^{(l+1,2)}(g) = 0$$
 since $H \cap CL(g) = \phi$

Example (4.3):

To construct Ar(Q₄₅₀×C₅)=Ar($Q_{2.3^25^2}$ ×C₅), p_1 =3, p_2 = 5 , we use theorem(3,5) as the following :-

 $Ar(Q_{450}) =$

Γ-Classes	[1]	[x150]	[x ⁵⁰]	[x90]	[x ³⁰]	[x10]	[x18]	[x6]	[x ²]	[x ²²⁵]	[x75]	[x25]	[x45]	[x15]	[x5]	[x9]	[x3]	[x]	[y
[CL _a]	1	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	45
C _G (CL _α)	900	450	450	450	450	450	450	450	450	900	450	450	450	450	450	450	450	450	2
Φ1	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ2	300	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
Φ,	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ_4	180	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ,	60	60	0	60	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Фе	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ,	36	0	0	36	0	0	36	0	0	0	0	0	0	0	0	0	0	0	0
Φ,	12	12	0	12	12	0	12	12	0	0	0	0	0	0	0	0	0	0	. (
Φ,	4	4	4	4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0
Φ10	450	0	0	0	0	0	0	0	0	450	0	0	0	0	0	0	0	0	0
Φ::	150	150	0	0	0	0	0	0	0	150	150	0	0	0	0	0	0	0	(
Φ12	50	50	50	0	0	0	0	0	0	50	50	50	0	0	0	0	0	0	0
Φ13	90	0	0	90	0	0	0	0	0	90	0	0	90	0	0	0	0	0	0
Φ14	30	30	0	30	30	0	0	0	0	30	30	0	0	30	0	0	0	0	(
Φ,,	10	10	10	10	10	10	0	0	0	10	10	10	10	10	10	0	0	0	(
Φ16	18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	(
Φ17	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	(
Ф	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	(
Φ,,	225	0	0	0	0	0	0	0	0	225	0	0	0	0	0	0	0	0	1

Table(4,3)

Then by using theorem (4,2) Artin characters table of the group $(Q_{98} \times C_5)$ is:-

$Ar(Q_{450} \times C_5)$

T-Classes	[1,1]	[x150,1]	[x ⁵⁰ , 1]	[x 90 , 1]	[x30,1]	[x10, I]	$[x^{10}, l]$	$[x^6, l]$	$[x^2, l]$	$[x^{225}, I]$	$[x^{75}, I]$	$[x^{25}, l]$	[x45,1]	$[x^{15}, I]$	[x5,1]	[x9,1]	[x2,1]	[x, l]	[y,1]
CL _a	1	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2250
C _G (CL _a)	4500	2250	2250	2250	2250	2250	2250	2250	2250	4500	2250	2250	2250	2250	2250	2250	2250	2250	2
Φ _(1,1)	4500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(2,1)	1500	1500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(1,1)	500	500	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O _[4,1]	900	0	0	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(5,1)	300	300	0	300	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ _(6,1)	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(7,1)	180	0	0	180	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0
Φ(8.1)	60	60	0	60	60	0	60	60	0	0	0	0	0	0	0	0	0	0	0
Φ(8,1)	20	20	20	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0
Φ(10.1)	2250	0	0	0	0	0	0	0	0	2250	0	0	0	0	0	0	0	0	0
Φ(11,1)	750	750	0	0	0	0	0	0	0	750	750	0	0	0	0	0	0	0	0
Φ(12.1)	250	250	250	0	0	0	0	0	0	250	250	250	0	0	0	0	0	0	0
Φ(13,1)	450	0	0	450	0	0	0	0	0	450	0	0	450	0	0	0	0	0	0
Φ(14.1)	150	150	0	150	150	0	0	0	0	150	150	0	0	150	0	0	0	0	0
Φ(15.1)	50	50	50	50	50	50	0	0	0	50	50	50	50	50	50	0	0	0	0
Φ(16.1)	90	0	0	90	0	0	90	0	0	90	0	0	90	0	0	90	0	0	0
Φ(17.1)	30	30	0	30	30	0	30	30	0	30	30	0	30	30	0	30	30	0	0
Φ(18.1)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0
Φ(19,1)	1125	0	0	0	0	0	0	0	0	1125	0	0	0	0	0	0	0	0	5

[1,z]	$[x^{150}, z]$	$[x^{50}, z]$	$[x^{90},z]$	[x30,z]	$[x^{10},z]$	$[x^{18}, z]$	[x6,z]	$[x^2,z]$	$[x^{225}, z]$	$[x^{78},z]$	$[x^{25}, z]$	$[x^{48}, z]$	$[x^{15},z]$	$[x^s,z]$	[x9,z]	[x3,z]	[x,z]	[y,z]
1	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2.	2	2	450
900	450	450	450	450	450	450	450	450	900	450	450	450	450	450	450	450	450	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Φ(1,2)	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(2,2)	300	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(3.2)	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(4,2)	180	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(5.2)	60	60	0	60	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(6,2)	20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Φ(7.2)	36	0	0	36	0	0	36	0	0	0	0	0	0	0	0	0	0	0	0
Φ(8,2)	12	12	0	12	12	0	12	12	0	0	0	0	0	0	0	0	0	0	0
Φ(9.2)	4	4	4	4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0
Φ _(10,2)	450	0	0	0	0	0	0	0	0	450	0	0	0	0	0	0	0	0	0
Φ(11.2)	150	150	0	0	0	0	0	0	0	150	150	0	0	0	0	0	0	0	0
D _(12.2)	50	50	50	0	0	0	0	0	0	50	50	50	0	0	0	0	0	0	0
D _(13,2)	90	0	0	90	0	0	0	0	0	90	0	0	90	0	0	0	0	0	0
Φ(14.2)	30	30	0	30	30	0	0	0	0	30	30	0	0	30	0	0	0	0	0
D _(15.2)	10	10	10	10	10	10	0	0	0	10	10	10	10	10	10	0	0	0	0
Φ(16.2)	18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	0
Φ(17.2)	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	0
Φ(18.2)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0
Φ _(19,2)	225	0	0	0	0	0	0	0	0	225	0	0	0	0	0	0	0	0	1

900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
300	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
00	100	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
60	60	0	60	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	20	20	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0
36	0	0	36	0	0	36	0	0	0	0	0	0	0	0	0	0	0	0
12	12	0	12	12	0	12	12	0	0	0	0	0	0	0	0	0	0	0
4	4	4	4	4	4	4	4	4	0	0	0	0	0	0	0	0	0	0
450	0	0	0	0	0	0	0	0	450	0	0	0	0	0	0	0	0	0
150	150	0	0	0	0	0	0	0	150	150	0	0	0	0	0	0	0	0
50	50	50	0	0	0	0	0	0	50	50	50	0	0	0	0	0	0	0
90	0	0	90	0	0	0	0	0	90	0	0	90	0	0	0	0	0	0
30	30	0	30	30	0	0	0	0	30	30	0	0	30	0	0	0	0	0
10	10	10	10	10	10	0	0	0	10	10	10	10	10	10	0	0	0	0
18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	18	0	0	0
6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	6	6	0	0
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0
225	0	0	0	0	0	0	0	0	225	0	0	0	0	0	0	0	0	1

Table(4,4)

REFERENCES

- [1] A. H. Abdul-Munem "On Artin Cokernel of the Quaternion group Q_{2m} When m is an Odd number", M.Sc. thesis, University of Kufa, 2008.
- [2] A. S. Abid, "Artin's Characters Table of Dihedral Group for Odd Number", M.Sc. thesis, University of Kufa, 2006.
- [3] C. Curits and I. Reiner, "Methods of Representation Theory with Application to Finite Groups and Order", John Willy&sons, New York, 1981.
- [4] I. M. Isaacs, "On Character Theory of Finite Groups", Academic Press, New York, 1976.