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Abstract:  

In the present paper, we obtain some new fixed point theorems 

for relative contractive  mappings in the setting of ultrametric spaces. 

Our theorems complement, generalize and extend some well known 

results of Gajic [7], Rao and Kishore[5] and others. 
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1. INTRODUCTION:  

 

There have been a lot of generalizations of metric space such as 

cone metric space, G- metric space, b- metric space, 

probabilistic metric space, Ultrametric space etc. One of the 

recent generalization is ultrametric space defined by Rooji [1]. 

After the introduction of ultrametric space, Petals and Vidalis 

[2] proved a fixed point theorem for contractive mappings on 

spherically complete ultrametric space X. 

Petals and Vidalis [2] established the following fixed 

point theorem: 
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Theorem (1.1): Let (X,d) be a spherically complete ultrametric 

space and T:X→X a contractive mapping. Then T has a unique 

fixed point. 

 

In 2001 Gajic [7] obtained the following generalization of the 

above theorem: 

Theorem (1.2): Let (X,d) be a spherically complete ultrametric 

space and T:X→X a mapping such that for all x,y Є X, x≠y, 

d(Tx,Ty)   < max { d(x,y), d(x,Tx), d(y,Ty)} 

Then T has a unique fixed point. 

 

Later on Rao and Kishore [5] extended the above result for a 

pair of maps of Jungck type as follows: 

Theorem (1.3): Let (X,d) be a spherically complete ultrametric 

space. If f and T are self maps on X satisfying 

   T X f X
 

d(Tx,Ty)<max{d(f(f(x),f(y)), d(f(x),T(x)),d(f(y),T(y))},     for all x,y

X, x  y. 

Then there exists zX such that fz=Tz. 

Further if f and T are coincidentally commutating at z then z is 

the unique common fixed point of f and T. 

In this chapter we have generalized and extended the previous 

results by increasing the number of maps. 

 

2. PRELIMINARIES: 

 

Definition (2.1): An ultrametric space is a set X together with 

a function   d:XxXR+, which satisfies for all x,y and z in X 

(U1) d(x,y)  0 

(U2) d(x,y) = 0 if x=y 

(U3) d(x,y) = d(y,x) (Symmentry) 

(U4) d(x,z) max{d(x,y),d(y,z)}   (strong triangle or ultrametric 

inequality) 

Example (2.2): The discrete metric is an ultrametric. 
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Example (2.3): the p-adic number form a complete ultrametric 

space. 

Definition (2.4): An ultrametric space (X,d) is said to be 

spherically complete if every shrinking collection of balls in X 

has non-empty intersection. 

Definition (2.5): A self mapping T of a metric (resp. an 

ultrametric) space X is said to be contractive (or, strictly 

contractive) mapping if 

d(Tx,Ty) < d(x,y)  for all x,y ЄX with x≠y. 

Example (2.6): Let X=(- , ) endowed with the usual metric 

and T:XX defined by  

                                        Tx=x  +
1

1 ex
 

for all x Є X. Here X is complete and T is a contractive mapping 

but T does not have a fixed point.  

Definition (2.7): For x Є X, r>0, Br(x) = {yЄX : d(x,y)<r} is 

called the ball (open) with centre x and radius r. 

 

3. MAIN RESULTS 

 

Theorem (3.1): Let (X,d) be a sphereically complete 

ultrametric space. If S,T:XX are mappings such that: 

(i) d(Tx,Ty)<max{d(Sx,Sy),d(Sx,TSx),d(Sy,TSy)}

x,yЄX, x≠y. 

(ii) d(Sx,Sy) < d(x,y) 

(iii) TS(x) = ST(x)  xЄX. 

Then S and T have a unique common fixed point in X. 

Proof: Using condition (ii) and (iii) in (i) we have 

d(Tx,Ty) < max{d(Sx,Sy),d(Sx,STx),d(Sy,STy)} 

or, d(Tx,Ty) < max{d(x,y),d(x,Tx),d(y,Ty)} 

By theorem (1.2) T has a unique fixed point i.e. z=Tz. 

Now, 

d(z,Sz) = d(Tz,STz) = d(Tz,TSz) 

             < max{d(Sz,S2z),d(Sz,TS2z),d(S2z,TS2z)} 

             = max{d(Sz,S2z),d(Sz,S2Tz),d(S2z,S2Tz)} 
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             < max{d(z,Sz),d(z,Sz),d(Sz,Sz)} 

i.e. d(z,Sz) < d(z,Sz), which is a contradiction and hence z=Sz. 

Uniqueness: If possible let z and w be two distinct fixed point of 

S and T, then, 

d(z,w) = d(Tz,Tw) < max{d(Sz,Sw),d(Sz,TSw),d(Sz,TSw)} 

            = max{d(z,w),d(z,w),d(z,w)} 

i.e. d(z,w) < d(z,w) which is not possible and hence z = w. So z is 

the unique fixed point of S and T. 

Remarks (3.2):  If we put S=I (identity map), theorem (3.1) 

reduces to the theorem (1.2) given by Gajic[7 ] 

Theorem (3.3): Let (X,d) be a spherically complete metric 

space. If T, f and g are self maps on X satisfying: 

(i) g(x) f(x) 

(ii) d(g(x),g(y)< 

max{d(f(Tx),f(Ty)),d(f(Tx),g(Tx)),d(f(Ty),g(Ty))} x,y 

Є X, x≠y. 

(iii) d(Tx,Ty) < d(x,y) 

(iv) T(f(x)) = f(T(x)) and T(g(x)) = g(Tx).  x Є X. 

 

Then Tz =fz =gz. Further if f & g are commutative then there 

exists a unique common fixed point of T, f and g. 

Proof: using condition (iii) and (iv), condition (ii) becomes  

d(g(x),g(y)) < max{d(T(fx),T(fy)),d(T(fx),T(gx)),d(T(fy),T(gy))} 

or d(g(x),g(y)) < max{d(fx,fy),d(fx,gx),d(fy,gy)} 

By theorem (1.3) z is the unique common fixed point of f and g 

i.e. z=f(z)=g(z) 

Now 

d(z,Tz) = d(gz,Tgz) = d(gz,gTz) 

             < max{d(fTz,fT2z),d(fT(z),gT(z)),d(fTz,gT2z)} 

               d(Tfz,Tgz) < max{d(fz,Tfz),d(fz,gz),d(fz,Tgz)} 

              =max{d(z,Tz),d(z,z),d(z,Tz)} 

i.e. d(z,Tz) < d(z,Tz) which is a contradiction hence z=Tz. 

And using theorem (1.1) z is unique fixed point for T. Also from 

(ii) uniqueness of z follows. Hence T, f and g have unique 

common fixed point. 
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Remarks (3.4) if we put T=I, identify map, theorem (3.3) 

reduces to theorem (1.3) due to Rao and Kishore [5]  i.e. 

                    d(g(x),g(y))< max{d(f(x),f(y)),d(f(x),g(x)),d(f(y),g(y))} 
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