

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Technical Review and Analysis on Students Academic Website Projects Using *GTmetrix* Web Speed and Optimization Tool

FLORETO B. QUINITO, JR. JULIETO P. CATIPAY Information Technology Department Mindanao University of Science and Technology – Jasaan Campus Jasaan, Misamis Oriental, Philippines

Abstract:

Three local government website projects in the province of Misamis Oriental deployed by the Bachelor of Science in Information Technology students of Mindanao University of Science and Technology-Jasaan Campus were subjected for review using the GTmetrix web speed optimization tool. The purpose of this study was to evaluate the general performance of the websites in terms of access speed and page efficiency by determining whether the design of the websites follow the global best practices of web page optimization. It aims to identify specific aspects of the websites that need major improvements and how it can be improved. The study uses data collection from the result of individual website review. Statistical mean was used to compute the general performance score based from the individual aspect-grades of each website. The study found out that the websites are unoptimized based on the predefined speed category and GTmetrix PageSpeed set rules.

Key words: Web Analytics, Web Speed Optimization, Web Page Performance

INTRODUCTION

Internet has become the backbone of every field. Over the last vears, web development is affecting the society from all aspects i.e. business environment, educational field, communicating ways between people. (Naazir, et. al, 2013). Websites have become an important channel for organizations to make transaction and provide service to customers. In recent years, the applications of information technology have provided an even more powerful platform for new website applications (Chen, 2009). Web pages must be fast and effective. To estimate serviceability, the features of web pages must be measurable (Lamichhane & Meesad, 2011). Since web pages are one of the significant components of e-government strategy. most evaluation itself is a wide concept. It depends on multiple qualitative and quantitative factors (Rogers, et.al, 2007). The quantitative factors such as download delay, errors in pages, broken links, and server response time and so on can be measured by web diagnostic tools (Jati & Dominic, 2010). There are various web diagnostic tools available in the internet today like Pingdom, WebPageTest, Sucuri Load Time Tester, Google PageSpeed Insights, PageScoring, and GTmetrix. These web tools help the web developer analyse diagnostic the performance of their web pages and also help them how to optimize their codes and web elements for better performance. In the setting of this study the *GTmetrix* was used. *GTmetrix* evaluates page performance based on key indicators of page load speed. It uses both the Google PageSpeed and Yahoo! YSlow. It provides track performance with monitoring, graphs and alerts. It provides visual performance graphs like Page Load Time, Page Size and Request Counts. It displays the PageSpeed and YSlow scores after reviewing the entire web files.

Three websites were deployed by the Bachelor of Science in Information Technology (BSIT) students of Mindanao University of Science and Technology - Jasaan Campus, (MUST-Jasaan) in three different local government agencies in the province of Misamis Oriental. The *jasaan.gov.ph* was used as the official website of the Municipality of Jasaan. The balingasag.net for the Municipality of Balingasag and the pnpmisorppo.org was used as the official website for the Philippine National Police – Misamis Oriental Police Provincial Office (PNP-MOPPO). The general objective of this study is to review the general performance of the websites based on GTmetrix's set rules. This study is to determine whether the websites are optimized and fast enough when they are accessed. Specific objectives includes the identification of the website elements that are considered *unoptimized*, very unoptimized or extremely unoptimized based on grade category. Findings of this study will be useful in the improvement of future website projects in the academe in terms of efficiency and optimization. This will also align the academic website projects according to the global best practices and standards.

LITERATURE

Krug (2006) suggests that for any user, the website of an institution must be understandable. Some institutions or universities for example, pay attention to design usable website to meet needs of coming visitors. Not only serving to its current students and employees, a website of an educational body also gives services to new visitors, seeking any kind of information about the organization. A website not only provides cost effective and timely platform for communication with stakeholders, but also helps to shape and present its image on the internet (Mentes & Turan, 2012). As organizations try out new ways of selling and communicating over the Internet, it is

becoming increasingly apparent that the performance of their websites in terms of the extent to which they can attract and retain traffic, strongly influences the volume of business transacted on them (Tarafdar & Zhang, 2008). It is important for organizations to identify factors that influence website performance for appropriately focusing website development efforts towards specific parameters and including relevant performance-influencing features within the website. Analysis of website performance in terms of design criterion and related factors is therefore an important area of enquiry (Torkzadeh & Dhillon, 2002). Technical properties of the websites include security. access speed and accessibility. Access speed determines how fast the website can deliver and display web pages (Rose, et. Al. 1999).

Users coming to an educational website are usually concerned with two major points- one is finding the information essayed with ease and the other is finding the information in a timely fashion (Mustafa & Al-Zoua'bi, 2008; Ivory & Hearst, 2001). Dominic and Jati (2009) evaluated the usability and quality of Malaysian University websites based on factors like load time, frequency of updates, accessibility errors, and broken links using the following tools: Website optimization, Check link validator, HTML validator and accessibility testing software. Jati & Dominic (2009) confirmed in their study that the E-government websites of Asian countries are neglecting quality criteria. They performance and argued that webmasters, web applications developers, and website quality assurance managers need tools and methods that can match up to the new needs (Jati & Dominic, 2009). PR Newswire (2015) reported that speed is a critical element of running a successful website and should always be a priority for site managers. In addition to providing a lag-free and responsive user experience, a fast loading website also has a direct impact on the overall performance of the website. Faster loading websites benefit

from better user engagement, higher conversion rates and higher Search Engine Optimization (SEO) rankings.

Web analytics refers to a combination of measuring, acquisition, analysing and reporting of data collected from the Internet with the aim of understanding and optimizing web experience. (Web Analytics Association, 2008). Web analytic tools automatically calculate statistics about the detail use of site. The method studies the web as whole by calculating statistics about the detail use of the site and providing Webtraffic data, visibility, connectivity, ranking and overall impact of a site on the Web (Mvungi & Tossy, 2015). Website analysis is an ongoing process (Kaur & Singh, 2015). Web analysis perform several inspections on the websites and software and use usability criteria to determine some faults on the systems (Mvungi & Tossy, 2015). The analysis is required during the development of a website to cognize about its potential users so that layout design and content can be placed on the web accordingly. Also, once the website is developed, the analysis process does not end there but it continues for further maintenance and optimization (Kaur & Singh, 2015).

Despa (2014) employed GTmetrix to evaluate the NUVE applications. In formalizing the ISDF Software Development Methodology for the ALPHA project, Despa (2015) also employed the GTmetrix to collect data regarding quality. Same tool was also used by AbanteCart latest version 1.2.7 to evaluate its speed. The Progressive Digital Media Technology News (2015) reported that shoppers from UK see website speeds and functionality equally important than design and style. The Retail Speed League created by Citrix utilized GTmetrix to extract data to rank UK's online retailer by website performance.

METHODS

Three academic website projects were selected to undergo analysis using *GTmetrix*: review and iasaan.gov.ph. balingasag.net and the pnpmisorppo.org websites. The Uniform Resource Locator (URL) of each project was keved in the GTmetrix web page whose server is located at Vancouver, Canada. The *GTmetrix* tool meticulously scanned the contents of the website and analysed the performance based on its test speed criteria. After each evaluation, *GTmetrix* then displayed the overall score based on the Google PageSpeed and Yahoo! YSlow set rules. It also shows the specific criterion-based grade and recommendations based from both PageSpeed and YSlow tests. The lowest possible grade is zero (0) and the highest possible is one hundred (100). Page and content speed category is grounded to the following grade range: very optimimized (85-100), optimized (71-84), unoptimized (56-70), very-unoptimized (30-55) and extremely unoptimized (0-29). Figure 1 shows the technical review and analysis process of this study.

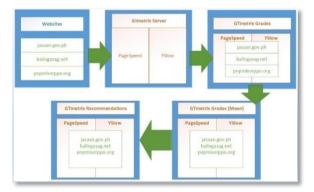


Figure 1. Technical Review and Analysis Process

GTmetrix result displays the overall score for both the *PageSpeed* and *YSlow*. The criterion grade is also displayed together with the type of file and the priority category. Figure 2

shows the portion of the sample screenshot of the *GTmetrix* PageSpeed test result for the balingasag.net website.

PageSpeed	YSlow	Waterfall	Video	History				
RECOMMENDATION					GRADE		TYPE	PROPETY
Defer parsing of Java Soript					P (0)	*	35	HEGH
Ipeolty image dimensions					P (0)	*	IMAGES	HIGH
· Leverage brows	er osohing				-	*	SUNCH	нон
Berve scaled images				1.00	*	IMAGES	HIGH	
Optimize Images			D (80)	*	MAGES	нан		
Specify a Vary: Accept-Encoding header			C (75)	*	SUMUL	HIGH		
Enable gzip compression				cm	×	SUMUR	нан	
Avoid a character set in the mets tag				10.000	•	CONTENT	нан	
Avoid C33 @import				B (85)	•	CSS	MEDIUM	
Avoid bad requests			0 (95)	•	CONTENT	HIGH		
· Inline small CB					0 (80)		CSS	HIGH

Figure 2. Screenshot portion of PageSpeed test result for balingasag.net

The display of exact time each of the website component can be seen in the waterfall display. Figure 3 shows the portion of the *GTmetrix* result through the *waterfall* display.

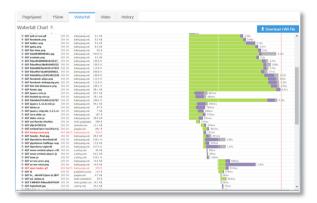


Figure 3. Screenshot portion of GTmetrix waterfall test result for balingasag.net

The statistical mean was calculated for both *PageSpeed* and *YSlow* tests. The *PageSpeed* mean and the *YSlow* mean were sorted accordingly from lowest to highest in order to easily

determine the aspects of the projects that needs major improvements. Recommendations provided by the *GTmetrix* based on the scores are listed down.

RESULTS

The technical review and evaluation of the websites using GTmetrix shows that jasaan.gov.ph got a PageSpeed score of 57.00 (unoptimized), balingasag.net scored 62.00 (unoptimized) and pnpmisorppo.org scored 50.00 (very unoptimized). Their PageSpeed mean is 56.33 which is categorized as unoptimized. On the other hand, the three websites got higher scores in the YSlow test. jasaan.gov.ph scored of 76.00 (optimized), balingasag.net scored 73.00 (optimized) and pnpmisorpo.org scored 76.00 (optimized). Their YSlow mean is 75.00 which gave the impression that the overall website performance is optimized

	GTmetrix Pe	rformance Score Resu	ılt		
		Grade (100%)		Maaaa	
Key Indicator	(A)	(B)	(C)	Mean	
			50.00	56.33	
PageSpeed	57.00 (unoptimized)	62.00 (unoptimized)	(very unoptimized)	(unoptimized	
	76.00		76.00	75.00	
YSlow	(optimized)	73.00 (optimized)	(optimized)	(optimized)	
• • •		. (()		•••	

Table 1. Summary of GTmetrix Performance Score Result

(A)- jasaan.gov.ph (B) - balingasag.net (C)- pnpmisorppo.org

Going into the details of the *GTmetrix PageSpeed* evaluation the result shows that various aspects of the websites were rated as *extremely unoptimized*. Top on the list is the *specification of image dimension (mean* = 4.67). The websites' images have no width or height attributes. Leverage browsing caching (mean = 12.33). The cacheable resources have a short freshness lifetime. The resources expiration were not set. Served scale images (mean = 12.33). Many of the content images were not properly resized that could have saved 85% of image size. Among the very unoptimized aspects are: Enable gzip compression (mean = 42.00). The resources were not compressed with gzip which could reduce their transfer size by 69% and *Defer parsing of Javascript (mean = 52.33)* in which a considerable amount of *Javascript* is parsed during initial load.

The unoptimized aspects includes Minify CSS (mean = 60.00) and Specify a Vary: Accept-Encoding header (mean = 68.33). Many Cascading Style Sheet (CSS) files were not minified which could save many bytes of data and speed up downloading, parsing and executing time. Various resources that are publicly cacheable and compressible do not have "Vary: Accept-Encoding" header. The absence of these header unable to instruct the proxy server to store both a compressed and uncompressed version of the resource.

Aspects that were considered optimized comprises Optimize images (mean = 72.33). Some content images were not appropriately sized which could be reduced by 12%. Minify HTML (mean = 74). Some HTML codes were not compacted or minified which can saved many bytes of data and speed up downloading, parsing and execution. Avoid CSS @import (mean = 75.33). There are CSS external stylesheet that were included which uses @import. This external stylesheet can add additional delays during the loading of the webpage. Avoid a character set in a meta tag (mean = 85). Specifying a character set in a meta tag disables the lookahead downloader in IE8. The rest of the aspects got above 85 grade so they were categorized as very fast. Table 2 shows the summary of the GTmetrix PageSpeed result with the corresponding criterion-based mean.

Table 2. Summary of GT	metrix PageSpeed Result
------------------------	-------------------------

	Grade (100%)				
Aspects	(A)		(C)	Mean	Remarks
Specify image dimension	14	0	0	4.67	
Leverage browsing caching	3	29	5	12.33	
					Extremely
Serve scaled images	0	30	7	12.33	Unoptimized
Enable gzip compression	47	77	2	42.00	

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 7 / October 2016

					Very
Defer parsing of Javascript	72	0	85	52.33	Unoptimized
Minify CSS	38	95	47	60.00	
Specify a Vary: Accept-Encoding header	70	75	60	68.33	Unoptimized
Optimize images	78	87	52	72.33	
Minify HTML	80	84	58	74.00	
Avoid CSS @import	85	85	56	75.33	Optimized
Avoid a character set in a meta tag	85	85	85	85.00	
Avoid bad requests	100	88	72	86.67	
Inline small CSS	80	88	100	89.33	
Inline small Javascript	84	91	100	91.67	
Specify a character set early	95	90	95	93.33	
Serve resources from a consistent URL	100	89	100	96.33	
Minify Javascript	99	99	92	96.67	
Specify a cache validator	100	98	94	97.33	
Remove query strings from static resources	100	98	100	99.33	Very Optimized
Avoid landing page redirects	100	100	100	100.00	
Enable keep-alive	100	100	100	100.00	
Minimize redirects	100	100	100	100.00	
Minimize request size	100	100	100	100.00	
Optimize the order of styles and scripts	100	100	100	100.00	
Put CSS in the document head	100	100	100	100.00	
Combine images using CSS sprites	100	100	100	100.00	
Prefer synchrounous resources	100	100	100	100.00	

(A) jasaan.gov.ph (B) - balingasag.net (C) pnpmisorppo.org

Furthermore, the evaluation of GTmetrix using YSlow shows almost similar result. The extremely unoptimized aspects includes Add Expires header (mean = 0.00). Static components of the websites have no far-future expiration date. Expires headers let the browser know whether to serve a cache version of the page. This criteria is similar to the Leverage browsing caching in the PageSpeed test. Use a Content Delivery Network (CDN) (mean = 0.00). The websites did not use a CDN which supposedly can give an equally fast web experience across the globe. Compress components with gzip (mean = 4.00). Many of the plain text components were not compressed using gzip during data transfer. This criterion is similar with the Enable gzip compression in the PageSpeed test.

Make fewer HTTP request (mean = 47.33) which is similar to the Defer parsing of Javascript and Minify CSS in the PageSpeed test found to be very unoptimized. An impression that there were multiple external Javascript scripts and multiple external CSS stylesheets that were not combined into one. There was only one unoptimized aspect found in this test, the Use of cookie-free domains (mean = 65.00). This means

that there are website components which are not cookie-free. Web *cookies* cause unnecessary web traffic. The rest of the website aspects got a grade above 85 and they were categorized as *very optimized*. Table 3 below shows the summary of the *GTmetrix YSlow* result.

GTmetrix YSlow Evaluation Result					
	Grade (100%)				
Aspects	(A)	(B)	(C)	Mean	Remarks
Add Expires headers	0	0	0	-	
Use a Content Delivery Network (CDN)	0	0	0	-	Extremely
Compress components with gzip	12	0	0	4.00	Unoptimized
					Very
Make fewer HTTP requests	78	8	56	47.33	Unoptimized
Use cookie-free domains	0	95	100	65.00	Unoptimized
Reduce DNS lookups	100	65	100	90.00	
Avoid HTTP 404 (Not Found) Error	100	90	90	93.33	
Minify Javascript and CSS	100	90	100	96.67	
Avoid empty src or href	100	100	100	100.00	
Avoid URL redirects	100	100	100	100.00	
Make AJAX cachable	100	100	100	100.00	
Put CSS at the top	100	100	100	100.00	
Remove duplicate Javascript and CSS	100	100	100	100.00	Very
Put Javascript at bottom	100	100	100	100.00	Optimized
Avoid AlphaImageLoader Filter	100	100	100	100.00	
Reduce the number of DOM elements	100	100	100	100.00	
Do not scale image in HTML	100	100	100	100.00	
Use GET for AJAX requests	100	100	100	100.00	
Avoid CSS expressions	100	100	100	100.00	
Reduce cookie size	100	100	100	100.00	
Make favicon small and cachable	100	100	100	100.00	
Configure entity tags (Etags)	100	100	100	100.00	
Make Javascript and CSS External	100	na	na	na	

Table 3. Summary of GTmetrix YSlow Result

(A)- jasaan.gov.ph (B) - balingasag.net (C)- pnpmisorppo.org

CONCLUSION AND RECOMMENDATIONS

The technical review and analysis of the websites deployed by BSIT students of MUST-Jasaan made a significant learning discoveries in the area of website speed optimization. The test results from *GTmetrix* highlighted both the strengths and weaknesses of the projects. This study was able to identify specific aspects of web page development that needs to be improved and the inputs on how to improve it. In the context of this study, the websites that undergone the review found to be average in its speed performance and brings a big space for

improvement. It is highly recommended that the websites need to specify the widths and heights for all images which allows faster rendering of web page images through the elimination of unnecessary reflows and repaints. Expires headers must be used in the web pages in order to let the web browsers know whether to serve a cache version of the page. The use of *Content* Delivery Network (CDN) matters a lot to deliver a faster web experience across the internetwork. Reduce the load times of pages by storing commonly used files from the website to the visitor's browser. The compression of resources using gzip which reduce the size of files sent from the server increases the speed to which the web files are transferred to the user's browser must be a priority. Parsing of the *Javascripts* must be deferred. The browser must parse the contents of all <script> tags in order to minimize the amount of Javascript needed to render the page. Multiple external CSS files should be combined and compacted into one to minimize *HTTP* requests. Specifying a Vary: Accept-Encoding header which instructs the proxy to store both a compressed and uncompressed version of the resource also help improve the load speed of the page. Using a cookie-free domains prevents unnecessary data traffic in the web.

The use of web diagnostic tools for web speed test like *GTmetrix* is very helpful in web page optimization. Such tool truly analyses the performance of each web page components and provides recommendations on how these components can be optimized for faster loading and access. The insights provided by the tool certainly helps web developers and web enthusiasts make efficient web pages thus minimizing data traffic in the internet. Academic institutions especially those that are integrating web development in their curriculum are encouraged to emphasize in their instruction the importance of web page optimization and to continually apply the global best practices in web development.

REFERENCES

- 1. Brits tell online retailers to stick to the basics (2015). Progressive Digital Media Technology News Retrieved from <u>http://search.proquest.com/docview/1695976758?accounti</u> <u>d=141440</u>
- 2. Chen, T. F., 2009, "Building a platform of business model 2.0 to creating real business value with Web 2.0 and accelerate the growth of highly value-added web information services industry," International Journal of Electronic Business Management, Vol. 7, No. 3, pp. 168-180.
- 3. Despa, M.L (2014). Quality Assurance in Innovative Software Development Projects. Paper presented at the 10th International Scientific Conference eLearning and Software for Education. Retrieved from http://search.proquest.com/central/docview/1534145229/f ulltext/49986A6D63B74618PQ/2?accountid=141440
- Despa, M. L. (2015). Formalizing the ISDF Software Development Methodology. Informatica Economica, 19(2), 66-80. Retrieved from http://search.proquest.com/docview/1696718046?accounti d=141440
- Ivory, M.Y. & Hearst, M.A. (2001). 'The State of the Art in Automating Usability Evaluation of User Interfaces' in: ACM Computing Surveys, Vol. 33, Issue 4, pp. 470-516.
- Jati, H. & Dominic, D. D. (2009) "Quality Evaluation of E-government Website Using Web Diagnostic Tools: Asian Case," Information Management and Engineering, ICIME '09. International Conference on, Kuala Lumpur, 2009, pp. 85-89.doi: 10.1109/ICIME.2009.147

- Kaur, K., & Singh, H. (2015). Analysis of website using click analytics. International Journal of Science, Engineering and Computer Technology, 5(6), 185-189. Retrieved from http://search.proquest.com/docview/1793585876?accounti d=141440
- Krug, S. (2006). Don't Make Me Think: A Common Sense Approach to Web Usability, 2nd Edition, Berkeley, 30-32.
- 9. Lamichhane, R., & Meesad, P. A Usability Evaluation for Government Websites of Nepal Using Fuzzy AHP.
- Mentes, S. A., & Turan, A. H. (2012). Assessing the Usability of University Websites: An Empirical Study on Namik Kemal University. Turkish Online Journal of Educational Technology-TOJET, 11(3), 61-69.
- 11. Mustafa SH, Al-Zoua'bi LF. (2008). Usability of the academic websites of Jordan's Universities: an evaluation study, in International Arab conference on information technology, Tunisia; p. 1-9
- 12. Mvungi, J., & Tossy, T. (2015). Usability evaluation methods and principles for the web. International Journal of Computer Science and Information Security,13(7), 86-92. Retrieved from http://search.proquest.com/docview/1703538763?accounti d=141440
- 13. Nazir, A., Raana, A., & Javed, A. (2013). Activity based quality model for evaluating Web2.0 applications. International Journal of Modern Education and Computer Science, 5(3), 8-17. doi:http://dx.doi.org/10.5815/ijmecs.2013.03.02
- 14. New AbanteCart version promises most powerful ecommerce platform for free. (2016). M2 Presswire Retrieved from

 $\label{eq:linear} http://search.proquest.com/docview/1791229202?accountid=141440$

- 15. PR Newswire (2015). CDNetworks recommends 5 website speed test tools for optimizing web performance. (2015, Feb 18). PR Newswire Retrieved from <u>http://search.proquest.com/docview/1655754637?accounti</u> <u>d=33262</u>
- 16. Rose, G., Khoo, H., & Straub, D (1999). Current Technological Impediments to business-to-consumer electronic commerce. Communications of the AIS 1 (16) pp. 1-74
- Tarafdar, M., & Zhang, J. (2008). Determinants of Reach and Loyalty - A Study of Website Performance and Implications for Website Design. The Journal of Computer Information Systems, 48(2), 16-24. Retrieved from

http://search.proquest.com/docview/232573825?accountid =141440

- Torkzadeh, G. & Dhillon, G. (2002). Factors that influence the Success of Internet Commerce, Information Systems Research, 13 (2), pp. 187-204
- 19. Web Analytics Association (2008). Web analytics definitions – draft for public comment. <u>http://www.digitalanalyticsassociation.org/Files/PDF_sta</u> <u>ndards/WebAnalytic</u> sDefinitions.pdf [Accessed on 10 September 2014].