

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

The Cyclic Decomposition of the Factor Group $cf(Q_{2m} \times D_5, Z) / \overline{R}(Q_{2m} \times D_5)$ when m = p, p>2, is prime number

ATHEER RAZZAQ JASIM University of Kufa Faculty of Education for Girls Department of Mathematics Prof. NASER RASOOL MAHMOOD University of Kufa Faculty of Education Department of Mathematics

Abstract:

Let Q_{2m} be the quaternion group of order 4m when m=p>2is an odd number, and D_5 be the dihedral group of order 10. let cf $(Q_{2m}\times D_5,Z)$ be the abelain group of Z-valued class function of the group $(Q_{2m}\times D_5)$. The intersection of $cf(Q_{2m}\times D_5,Z)$ with the group of generalized characters of $(Q_{2m}\times D_5)$.which is denoted by $R(Q_{2m}\times D_5)$ is a normal subgroup of the group $cf(Q_{2m}\times D_5,Z)$ denoted by \overline{R} $(Q_{2m}\times D_5)$, the factor group $cf(Q_{2m}\times D_5,Z) / \overline{R}$ $(Q_{2m}\times D_5)$ is a finite abelian group denoted by $K(Q_{2m}\times D_5,Z) / \overline{R}$ $(Q_{2m}\times D_5)$ is a finite abelian group $K(Q_{2p}\times D_5) = \bigoplus_{n=1}^{3} K(Q_{2m}) \oplus C_4 \bigoplus_{n=1}^{2(r+1)} C_5 \oplus C_8$ when m= p, p>2 is prime number.

Key words: cyclic decomposition, factor group, prime number

1. INTRODUCTION

Let G be a finite group, two elements of G are said to be Γ conjugate if the cyclic subgroups they generate are conjugate in G, this relation is an equivalence relation on G. and this equivalence relation called Γ - classes.

The Z-valued class function on the group G, which is constant on the Γ - classes forms a finitely generated abelian group cf(G,Z) of a rank equal to the number of Γ - classes . the intersection of cf(G,Z) with the group of all generalized characters of G, R(G) is a normal subgroup of cf(G,Z) denoted by R(G) each element in R(G) can be written as $u_1\theta_1$ + $u_2\theta_2$ +.....+ $u_i\theta_i$, where i is the number of Γ - classes, $u_1, u_2, ...,$ $u_i \in \mathbb{Z}$ and $\theta_i = \sum_{\sigma \in Gal(Q(\chi_i)/Q)} \sigma(\chi_i)$ where χ_i is an irreducible character of the group G and σ is any element in Galios group $Gal(Q(\chi_i)/Q)$. let $\equiv *(G)$ denotes the $i \times i$ matrix which corresponds to the θ_i 's and columns correspond to the Γ classes of G the matrix expressing R(G) basis in terms of the cf(G,Z) basis is $\equiv *(G)$ In 1995 N. R. Mahmood [6]

Studied the factor group $cf(Q_{2m},Z) / \overline{R}(Q_{2m})$. The aim of this paper is to find $\equiv^*(Q_{2m} \times D_5)$ and the factor group $cf(Q_{2m} \times D_5,Z) / \overline{R} (Q_{2m} \times D_5)$ when m = p, p > 2 is prime number.

2. PRELIMINARIES

We are review in this section some definitions and results: <u>Definition (2.1)</u>: [1]

Let F be a field .The general linear group GL(n,F) is a multiplicative group of all non-singular $n \times n$ matrices over F.

<u>Definition (2.2)</u>:[1]

Let F be a field .A matrix representation of G is homomorphism T: $G \rightarrow GL(n, F)$, *n* is called *the degree of representation* T .T is called a unit representation (principal) if T(g)= 1 for all $g \in G$.

<u>Definition (2.3</u>): [2]

A matrix representation T: $G \rightarrow GL(n,F)$ is said to be *reducible* if there exists a non-singular matrix A over F such that:

$$\mathbf{A}^{\cdot 1} \mathbf{T}(\mathbf{g}) \mathbf{A} = \begin{bmatrix} T_1(g) & T(g) \\ 0 & T_2(g) \end{bmatrix}, \text{ for all } \mathbf{g} \in \mathbf{G}.$$

Where $T^{1}(g)$ and $T^{2}(g)$ are matrices representations over F of the dimensions r×r, s×s respectively and E(g) is a matrix of the dimensions r×s such that 0< r < n and r+s=n.

If no such reducible matrix exists, then T(g) is called *an irreducible matrix representation*.

<u>Definition (2.4)</u>:[3]

The trace of an $n \times n$ matrix A is the sum of main diagonal elements, denoted by tr(A).

<u>Definition (2.5):</u> [4]

Let T be a matrix representation of G over the field F. The **character** χ of a matrix representation T is the mapping χ : G \rightarrow F defined by $\chi(g)$ =tr(T(g)) for all $g \in$ G. The degree of T is called the degree of χ .

<u>Remark (2.6):</u> [5]

- (I) A finite group G has a finite number conjugacy classes and a finite number of distinct K- irreducible characters, the group characters of a group representation is constant on a conjugacy class, the values of the characters can be written as a table known the characters table which is denoted by \equiv (G).
- (II) If G=C_n=< r> is the cyclic group of the order n generated by r, and $\omega = e^{2\pi i / n}$ is primitive n-th root of unity, then \equiv (C_n) is:

CL_{α}	[I]	[<i>r</i>]	$[r^2]$		$[r^{n-1}]$
$ \mathrm{CL}_{\alpha} $	1	1	1		1
$ C_G(CL_{\alpha}) $	n	n	n		n
χ_1	1	1	1		1
χ_2	1	ω	ω^2		$\omega^{n\text{-}1}$
χ_3	1	ω^2	ω^4		ω ⁿ⁻²
:	:	:	:	•	:
χn	1	ω^{n-1}	ω ⁿ⁻²		ω

<u>Definition (2.7)</u>: [6]

For each positive integer m, *The generalized Quaternion Group* Q_{2m} is a non-abelain group of order 4m with two generators x and y can write it as:

 $Q_{2m} = \{x^k y^t, 0 \le k \le 2m - 1, t = 0, 1\}$

which has the following properties: { $x^{2m} = y^4 = I$, $yx^my^{-1} = x^{-m}$ }

<u>Remark (2.8</u>):

The group $Q_{2m} \times D_5$ is the direct product group of the quaternion group Q_{2m} and the group D_5 is the dihedral group of order 10. <u>The character table of The Quaternion Group Q_{2m} when m is</u> <u>an odd Number(2.9)</u> [6]

There are two types of irreducible characters one of them is the character of the linear representation which are denoted by Ψ_1 , Ψ_2 , Ψ_3 and Ψ_4 respectively as in the following table:

	x ^k	xky
Ψ_1	1	1
Ψ_2	1	-1
Ψ_3	(-1) ^k	<i>i</i> (-1) ^k
Ψ_4	(-1) ^k	$i (-1)^{k+1}$

Table	(2.2)
-------	-------

The other characters of irreducible representations of degree 2 are denoted by χ_h such that:

 $\chi_h (x^k) = \omega^{hk} + \omega^{-hk} = e^{\pi i hk/m} + e^{-\pi i hk/m} = 2\cos(\pi hk/m), \chi_h (x^k y) = 0$ where $0 \le k \le 2m \cdot 1, \ 1 \le h \le m \cdot 1 \ and \ \omega = e^{2\pi i / 2m}.$

so there are m+3 irreducible characters of Q_{2m} .then , the general form of the character table of Q_{2m} when m is an odd number is given in the following table:

$\mathrm{CL}_{\mathfrak{a}}$	[I]	$[x^2]$	$[x^4]$		[<i>x</i> ^{m-1}]	[<i>x</i> ^m]	[x]	$[x^3]$	•••	[x ^{m-2}]	[y]	[<i>xy</i>]
$ \operatorname{CL}_{\alpha} $	1	2	2	•••	2	1	2	2	•••	2	m	m
$\mid C_{Q2m}(CL_{\alpha})\mid$	4m	2m	2m	•••	2m	4m	2m	2m	•••	2m	4	4
Ψ_1	1	1	1	•••	1	1	1	1		1	1	1
X^2	2	ω^{4+} $\omega^{2m\cdot4}$	ω ⁸ +ω ^{2m-} 8	•••	$\omega^{2(m-1)}+$ ω^{2}	2	$\omega^{2+} \omega^{2(m-1)}$	$\omega^{6} + \omega^{2m} + \omega^{6}$		$\omega^{2(m-2)} + \omega^4$	0	0
:	:	:	•••		:	••	:	:	••	•••	:	:
X(m-1)	2	$\omega^{2(m-1)} + \omega^2$	$\omega^{4(m-1)}+\omega^4$		$\omega^{m+1} + \omega^{m-1}$	2	$\omega^{m-1} + \omega^{m+1}$	$\omega^{m} \cdot \delta^{3+} \omega^{m+3}$		$\omega^{2} + \omega^{2(m-1)}$	0	0
Ψ_2	1	1	1	•••	1	1	1	1		1	-1	-1
X1	2	ω ² +ω ^{2(m-} 1)	ω ⁴ +ω ^{4(m-} 1)	•••	$\omega^{m-1} + \omega^{m+1}$	-2	$\omega + \omega^{2m}$	$\omega^{3} + \omega^{2m}$		$\omega^{m-2}+\omega^{m+2}$	0	0
:	:	:	••	••	:	•••		:	·.	•	:	••
X(m-2)	2	ω^{2m} ⁴ + ω^4	ω ^{2m-} ⁸ +ω ⁸	•••	$\omega^{2} + \omega^{2(m-1)}$	-2	$\omega^{m-2} + \omega^{m+2}$	$\omega^{m} \cdot \delta^{6+} \omega^{m+6}$		$\omega^{(m-2)^2+}\omega^{m^2-4}$	0	0
Ψ_3	1	1	1	•••	1	-1	-1	-1		-1	i	-i
Ψ_4	1	1	1	•••	1	-1	-1	-1		-1	-i	i

Table (2.3)

<u>Theorem (2.10</u>):[7]

- 1. The sum of characters is a character.
- 2. The product of characters is a character.

<u>Theorem (2.11)</u>:[1]

Let $T_1: G_1 \rightarrow GL(n,F)$ and $T_2: G_2 \rightarrow GL(m,F)$ are two irreducible representations of the groups G_1 and G_2 with characters χ_1 and χ_2 respectively, then $T_1^{\bigotimes} T_2$ is irreducible representation of the group $G_1 \times G_2$ with the character $\chi_1 \cdot \chi_2$.

<u>Definition (2.12)</u>:[8]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in G$.

 $\frac{Proposition (2.13)}{\text{The rational valued characters } \theta_i} = \sum_{\sigma \in Gal(Q(\chi_i)/Q)} \frac{\sigma(\chi_i)}{\sigma(\chi_i)} \text{ form basis for } \overline{R}(G), \text{ where } \chi_i \text{ are the } \sigma \in Gal(Q(\chi_i)/Q)$

irreducible characters of G .and their numbers are equal to the number of all distinct Γ - classes of G.

3. The Factor Group K(G)

We will study the factor group $K(C_n)$ and $K(Q_{2m})$

<u>Definition (3.1)</u>:[10]

A k-th order minor is the determinant of the sub matrix obtained by taking k rows and k columns of A.

Divisor over principal ideal domain, we can form the greatest common divisor (g.c.d) of all the k-th order minors of A, it is called *the k*-*th determinant divisor of A* and denoted by $D_k(A)$.

<u>Definition (3.2)</u>:[7]

Let M be a matrix with entries in a principal ideal domain R, be equivalent to a matrix D = diag $\{d_1, d_2, \dots, d_r, 0, 0, \dots, 0\}$ such that $d_j \mid d_{j+1}$ for $1 \le j < r$.

We call D *the invariant factor matrix of* M and d_1 , d_2 , ..., d_r the invariant factors of M.

<u>Theorem (3.3)</u>:[11]

Let $M \in M_{n \times m}(A)$ be a matrix with entries in a principle ideal domain. Then there exist two invertible matrices $L \in GL_n(A)$, $W \in GL_m(A)$ and a quasi-diagonal matrix $D \in M_{n \times m}(A)$ (that is, $d_{ij} = 0$ for $i \neq j$) such that

- 1- M=LDW.
- 2- $d_1 | d_2 ,..., d_i | d_{i+1} ,..., where the d_j$ are the diagonal entries of D and then, $D_k(LDW)=D_k(M)$ modulo the group of unites of A.

Proposition(3.4):[12]

Let A and B be two non-singular matrices of the rank n and m respectively, over a principal domain R . and let $L_1AW_1 = D(A)$ = diag{d₁(A),d₂(A),...,d_n(A)}, $L_2BW_2 = D(B) =$ diag{d₁(B),d₂(B),...,d_m(B)} be the invariant factor matrices of A and B, then ($L_1 \otimes L_2$).(A \otimes B).($W_1 \otimes W_2$)=D(A) \otimes D(B) and from this we can write down the invariant factor matrix of A \otimes B.

Let H_1 and H_2 be P_1 -group and P_2 -group respectively, where P_1 and P_2 are distinct primes. We know that $\equiv (H_1 \times H_2) = \equiv (H_1) \otimes \equiv (H_2)$

 $(P_1, P_2) = 1$, so we have $\equiv^*(H_1 \times H_2) = \equiv^*(H_1) \otimes \equiv^*(H_2)$.

<u>Remark (3.5</u>):[9]

Suppose cf(G,Z) is of the rank l, the matrix expressing the R(G) basis in terms of the $cf(G,Z) = Z^{l}$ basis is $\equiv^{*}(G)$.

Hence by theorem (3.3),we can find two matrices L and W with a determinant ± 1 such that L. $\equiv^*(G).W=D(\equiv^*(G))=$ diag{d₁,d₂,...,d_l}, d_i = $\pm D_i (\equiv^*(G))/ \pm D_{i-1} (\equiv^*(G))$.

 $\frac{Theorem (3.6):[9]}{\mathrm{K}(\mathrm{G})} = \bigoplus \sum C_{d_i} \text{ Such that } \mathrm{d}_i = \pm \mathrm{D}_i \; (\equiv^*(\mathrm{G})) / \pm \mathrm{D}_{i-1} \; (\equiv^*(\mathrm{G})) \; .$

Proposition (3.7):[9]

The *rational valued character tables of the cyclic group* C_{p^s} of the rank s+1 where p is a prime number which is denoted by ($\equiv^*(C_{p^s})$), is given as follows:

Г-classes	[r]	[r ^P]	[r ^{p²}]		[r ^{p^{s-3}}]	[r ^{p^{s-2}]}	[r ^{p^{s-1}}]	[1]
θ_1	1	1	1		1	1	1	1
θ_2	-1	p-1	p-1		p-1	p-1	p-1	p-1
θ_3	0	- <i>p</i>	p(p-1)		p(p-1)	p(p-1)	p(p-1)	p(p-1)
			•••	N.	•••		•••	
θ_{s-1}	0	0	0	••••	- p ^{s-3}	p ^{s-3} (p-1)	p ^{s-3} (p-1)	p ^{s-3} (p-1)
$\theta_{\rm s}$	0	0	0		0	- p ^{s-2}	p ^{s-2} (p-1)	$p^{s-2}(p-1)$
θ_{s+1}	0	0	0		0	0	- p ^{s-1}	p ^{s-1} (p-1)

Table (3.1)

Where its rank s+1 which represents the number of all distinct Γ -classes.

Proposition (3.8):[9]

If p is a prime number ,then $D(\equiv^*(C_p^s)) = diag\{p^s, p^{s-1}, \dots, p, 1\}$. *Theorem(3.9)*:[9]

Let p be a prime number, then: $K(C_{p^s}) = \bigoplus \sum_{i=1}^{s} C_{p^i}$.

Proposition (3.10): [6]

The rational valued character table of Q_{2m} when m is an odd number is given as follows:

Γ - classes of C_{2m}									
		x	2r				[y]		
θ_1									1
θ_2		1 1	1				-		0
:		1 1	1		1	1	1		:
$\theta^{(I/2)-1}$	$\equiv^*(\mathbf{C}_{\mathbf{m}}) \qquad \qquad \equiv^*(\mathbf{C}_{\mathbf{m}})$								0
$\theta^{(I/2)}$									0
$\theta^{(I/2)+1}$									-1
$\theta^{(I/2)+2}$		1 1	1		1	1	1		0
:						:			
_θ <i>I</i> -1		≡*(C _m)			Η			0
θΙ									0
θ I+1	2	2		2	-2	-2		-2	0
			Т	able (3	.2)				

Where 0 < r < m-1, I is the number of Γ - classes of C_{2m} , θ_j such that 1 < j < I+1 are the rational valued characters of group Q_{2m}

and if we denote C_{ij} the elements $\equiv (C_m)$ and $_{hij}$ the elements of H as defined by :

$$h_{ij} = \begin{cases} C_{ij} & \text{if } i=1 \\ -C_{ij} & \text{if } i\neq 1 \end{cases}$$

and where I is the number of Γ -classes of C_{2m} .

<u>Theorem(2.11)</u>: [6]

If m is an odd number, then: $K(Q_{2m}) = K(C_{2m}) \oplus C_4$.

Example(2.12):

The cyclic decomposition $K(Q_{14})$ can be written as follows : $K(Q_{14}) = K(Q_{2.7}) = K(C_{2.7}) \oplus C_4$

$$= \overset{(2)}{\mathbf{C}_{7}} \oplus \overset{(2)}{\mathbf{C}_{2}} \oplus \overset{(2)}{\mathbf{C}_{4}} = \overset{2}{\bigoplus} \overset{2}{\bigoplus} \overset{2}{\mathbf{C}_{7}} \overset{2}{\bigoplus} \overset{2}{\mathbf{C}_{2}} \oplus \overset{2}{\mathbf{C}_{4}}$$

3. THE MAIN RESULTS

In this section we find the rational valued character table of the group ($Q_{2m} \times D_5$) and K($Q_{2m} \times D_5$).

Theorem(4.1) :

Let m is an odd number, the rational valued character table $\equiv^*(Q_{2m} \times D_5)$ of the group $Q_{2m} \times D_5$ is: $\equiv^*(Q_{2m} \times D_5) = (\equiv^*(Q_{2m}) \otimes \equiv^*(D_5))$

Proof:

The character table of D_5 is :

CL_{α}	[d1]	$[d_2]$	[d ₃]	[d4]			
X'1	1	1	1	1			
X'^{2}	1	1	1	-1			
Х′з	2	τ_1	τ_2	0			
X'4	2	τ_2	τ_1	0			

Table (4.1)

Where $[d_1]=\{(e)\}$, $[d_2]=\{a, a^4\}$, $[d_3]=\{a^2, a^3\}$, $[d_4]=\{b, ba, ba^2, ba^3, ba^4\}$, $\tau_1 = \omega + \omega^4$, $\tau_2 = \omega^2 + \omega^3$, $\omega = e^{\frac{2\pi i}{5}}$.

The rational valued character table of D_5 is equal to: $\neq D_5 =$

Cl_a	$[d'_1]$	$[d'_2]$	$[d'_{3}]$			
θ'_1	1	1	1			
θ'_2	1	1	-1			
θ'3	4	-1	0			
Table (1.9)						

Table (4.2)
---------	------

Where $[d'_1]=\{(e)\}, [d'_2]=\{a, a^2, a^3, a^4\}, [d'_3]=\{b, ba, ba^2, ba^3, ba^4\},$ Then,

 $\begin{array}{l} \chi'_1(d_1) = \chi'_1(d_2) = \chi'_1(d_3) = \chi'_1(d_4) = \theta'_1(d'_1) = \theta'_1(d'_2) = \theta'_1(d'_3) = 1 \\ \chi'_2(d_1) = \chi'_2(d_2) = \chi'_2(d_3) = \theta'_2(d'_1) = \theta'_2(d'_2) = 1 \\ = -1 \\ \chi'_3(d_1) + \chi'_4(d_1) = \theta'_3(d'_1) = 4, \quad \chi'_3(d_2) + \chi'_4(d'_2) = \chi'_3(d_3) + \chi'_4(d_3) = \\ \theta'_3(d'_2) = -1 \\ \chi'_3(d_4) + \chi'_4(d_4) = \theta'_3(d'_3) = 0 \end{array}$

From the definition of $Q_{2m} \times D_5$ and theorem (2.11) $\equiv Q_{2m} \times D_5 = (\equiv Q_{2m}) \otimes (\equiv D_5)$ each element in $Q_{2m} \times D_5$ Let $t \in (Q_{2m} \times D_5)$, $t = (q,d) \forall q \in Q_{2m}$ and $d \in D_5$, $d \in \{e, a, a^2, a^3, a^4, b, ba, ba^2, ba^3, ba^4\}$. $q = x^s y^k$, $0 \le s \le 2m$, k = 0, 1for every irreducible character of $Q_{2m} \times D_5$ is $\chi_{(i,j)} = \chi_i \cdot \chi'_j$ where χ_i and χ'_i are the irreducible character of Q_{2m} and D_5

where $\chi_i~$ and $~\chi'_j~$ are the irreducible character of Q_{2m} and $~D_5$ respectively, then

$$\chi_{(i,j)}(t) = \chi_{(i,j)}(q,d) = \chi_i(q) \cdot \chi'_j(d) = \begin{cases} \chi_i(q) & \text{if } j = 1 & \text{and} & d \in D_5 \\ \chi_i(q) & \text{if } j = 2 & \text{and} & d \in \{e, a, a^2, a^3, a^4\} \\ -\chi_i(q) & \text{if } j = 2 & \text{and} & d \in \{b, ba, ba^2, ba^3, ba^4\} \\ 4\chi_i(q) & \text{if } j = 3 & \text{and} & d \in \{e\}, \lambda_i(a_i^2, a_i^3, a^4\} \\ -\chi_i(q) & \text{if } j = 3 & \text{and} & d \in \{a, a^2, a^3, a^4\} \\ 0 & \text{if } j = 3 & \text{and} & d \in \{b, ba, ba^2, ba^3, ba^4\} \end{cases}$$

From proposition (2.13)

$$\theta_{(i,j)} = \sum_{\sigma \in Gal(Q(\chi_{(i,j)})/Q)} \sigma(\chi_{ij})$$

Where $\theta_{(i,j)}$ is the rational valued character of $(Q_{2m} \times D_5)$ Then, $\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_{(i,j)}(t))/Q)} \sigma(\chi_{ij}(t))$ (A) If j=1 and $d \in D_5$ $\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_1'(d)) = \theta_i(q) \cdot 1 = \theta_i(q) \cdot \theta_j'(d)$ Where θ_i is the rational valued character of Q_{2m} . (B) (I) If j=2 and $d \in \{ e, a, a^2, a^3, a^4 \}$ $\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_2'(d)) = \theta_i(q) \cdot 1 = \theta_i(q) \cdot \theta_j'(d)$ (II) If j=2 and $d \in \{ b, ba, ba^2, ba^3, ba^4 \}$ $\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_2'(d)) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \cdot (-1) = \theta_i(q) \cdot (-1) = \theta_i(q) \cdot \theta_j'(d)$ (C) (I) If j=3 and $d \in \{ e \}$ $\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_3'(d)) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_3'(d))) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \sum_{\sigma \in Gal(Q(\chi_i(Q))/Q)}$

(II) If j=3 and d∈{ a, a², a³, a⁴}

$$\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi_3(d)) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) [\sum_{\sigma \in D_5} \sigma(\chi'_3(d)] = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q))[\tau_1 + \tau_2] = \theta_i(q) \cdot (-1) = \theta_i(q) \cdot \theta'_j(d)$$
(III) If j=3 and d∈{ b, ba, ba², ba³, ba⁴}

$$\theta_{(i,j)}(t) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q), \chi'_3(d)) = \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) [\sum_{\sigma \in D_5} \sigma(\chi'_3(d)]$$

$$= \sum_{\sigma \in Gal(Q(\chi_i(q))/Q)} \sigma(\chi_i(q)) \cdot 0 = 0 = \theta_i(q) \cdot \theta'_j(d)$$

From [A], [B] and [C] we get $\theta_{(i,j)} = \theta_i \cdot \theta'_j$ Then: $\equiv^*(Q_{2m} \times D_5) = \equiv^*(Q_{2m}) \otimes \equiv^*(D_5).$

Example(4.2):

To calculate $\equiv^*Q_{22} \times D_5$, we can use theorem(3.1). the rational valued character table of D_5 is:

Cl_a	$[d'_1]$	$[d'_2]$	$[d'_{3}]$
θ'_1	1	1	1
θ'_2	1	1	-1
θ'_3	4	-1	0

Table (4.3)

by proposition (3.7), and by proposition(3.10) the rational valued character table of Q_{22} is:

Γ -classes	[I]	[x ²]	$[x^{11}]$	[x]	[y]
θ_1	1	1	1	1	1
θ_2	10	-1	10	-1	0
θ_3	1	1	1	1	-1
θ_4	10	-1	-10	1	0
θ_5	2	2	-2	-2	0

Table (4.4)