

9774

ISSN 2286-4822

www.euacademic.org

EUROPEAN ACADEMIC RESEARCH

Vol. IV, Issue 11/ February 2017

Impact Factor: 3.4546 (UIF)

DRJI Value: 5.9 (B+)

SQL Injection Attacks and Bypass Filtration

ISLAM ABDALLA MOHAMED ABASS

Department of Computer Science

Al Jouf University

Qurayyat, Saudi Arabia

Abstract:

 SQL injection attacks are a serious security threat to Web

applications. They allow attackers to obtain the data stored in the

database. To address this problem, i present an extensive review of the

various types of SQL injection attacks known to date. For each type of

attack, i provide descriptions of how attacks of that type could be

performed and present a methodology to prevent SQL injection attacks.

I also created a program to scan any website for SQL injection

Vulnerability even if it the website use filtration to prevent SQL

injection.

Key words: Web Application, PHP, Structured Query Language

Injection (SQLI), Vulnerabilities.

1. INTRODUCTION:

Nowadays Companies can see the Internet as a business

opportunity for advertising, communication, promotional, and

E-commercial channel. Individuals can see the Internet as a

mobile workplace, social activity, E-learning or even for fun.

Because of that currently web applications are playing a

magnificent role in providing vital information to users around

the global. According to Tian et al. [1] web application software

security becomes more and more important as a result

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9775

information access through web applications. Recent

investigations show that web application vulnerabilities have

become the largest security threat. The Web Sense Security

Report shows that in the first half of year 2008, the most

popular websites that have been utilized by various hackers to

run malicious code were above 75%. Detecting and solving

vulnerability is the effective way to enhance web security. Web

application commonly has three tiers: presentation, logic, and

storage. The most important tier is the storage, it contains all

the sensitive data that web application used and because of

that hacker usually focuses on it using different type of attack

but the most devastating one in SQL injection attack.

2. THE DANGER OF SQLI ATTACKS [2, 16]

The truth is most flaws in application security can’t be fully

exploited without complementary flaws in the infrastructure. In

November 2005, a teenage hacker broke into Information

Security magazine using a SQL injection attack. Once in, he

used his access to steal customer, member, and commercial

information from the site, this isn’t just an old example because

SQLI is still at the top ten web application attacks now a day.

According to IMPERVA web application attack report published

in July 2013, retail applications suffered twice as many SQL

injection attacks. Their analysis revealed that SQL injection

attacks on retail applications were more intense, both in terms

of number of attacks per incident and duration of an incident,

so SQL injection attacks are becoming significantly more

popular amongst hackers, according to recent data.

3. SQLI ATTACKS [3, 4]

SQL injection has probably existed since SQL databases were

first connected to Web applications, its attack that consists of

insertion or "injection" of a SQL query via the input data from

the client to the application. A successful SQL injection exploit

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9776

can read sensitive data from the database, modify database

data (Insert/Update/Delete), execute administration operations

on the database (such as shutdown the DBMS), recover the

content of a given file present on the DBMS file system and in

some cases issue commands to the operating system. The

attacker injected SQL commands into data-plane input in order

to effect the execution of predefined SQL commands. This

vulnerability is not just web related but can also occur in

desktop applications that use SQL server backends. The

detectability of these vulnerabilities depends on the complexity

of the application in question.

For example, a typical form may ask for an ID and

create a URL: http://www.somewebsite.com/?id=somedata. SQL

Query behind this site could be " select text from news where

id=$id". An attacker using SQL Injection may enter "some data

or 1=1". If the web application does not properly validate or

encode the user-supplied data and sends it directly to the

database, the reply to the query will expose all ids in the

database since the condition "1=1" is always true. This is a

basic example, but it illustrates the importance of sanitizing

user-supplied data before using it in a query or command.

4. SQL INJECTION TYPE

In this section we will discuss SALIA type. SQLIA is not new

subject attackers can perform different type of attacks. These

attacks my not performed in isolation depending on the goals of

the attacker and the type of protection he face.

4.1 Tautologies [5, 6, 7]

This attack works by inserting an “always true” fragment into a

WHERE clause of the SQL statement. This is often used in

combination with the insertion of a double dash --, #, or try to

balance the query. This will cause the remainder of a statement

to be ignored, ensuring extraction of largest amount of data. An

attacker can use this technique to bypass authentication pages

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9777

or even extract sensitive data. Example: In this example attack,

an attacker submits single quote, OR1=1 followed by hyphen or

double hash for the login input field (the input submitted for

the other fields. The resulting query is: SELECT accounts

FROM users WHERE login=’’ or 1=1 -- AND pass=’’ AND pin=

.The code injected in the conditional (OR 1=1) transforms the

entire WHERE clause into a tautology. The database uses the

conditional as the basis for evaluating each row and deciding

which ones to return to the application. Because the conditional

is a tautology, the query evaluates to true for each row in the

table and returns all of them. In our example, the returned set

evaluates to a non-null value, which causes the application to

conclude that the user authentication was successful.

Even the web application programmer faltered the (=)

character the attacker can use like statement, SELECT

accounts FROM users WHERE login=’’ or 1 like 1 -- AND

pass=’’ AND pin= .The attacker will succeed and get the same

result.

4.2 Error base injection [1, 3, 4, 11, 12]

Before SQL injection was well understood, developers were

advised to disable all verbose error messages in the mistaken

belief that without error messages the attacker’s data retrieval

goal was next to impossible to achieve. In some cases developers

would trap errors within the application and display generic

error messages, whereas in other cases no errors would be

shown to the user. So error based SQL injection takes

advantage of poor error handling in web page processing. The

idea behind this attack is to gather information about the

database and the website behavior. First the attacker try to

break the query by comment it, and this will make the

application server generate error message. Most of these

messages have Additional information, to help programmers

debug their applications, further helps attackers gain

information about the schema of the back-end database.as

example let’s assume that we have this web site:

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9778

http://localhost/ sqlia/Less-1/?id=1, to break the query we just

have to add single quote and we will get this error message

(You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax

to use near '' LIMIT 0,1' at line 1).from the error message we

know that we are dealing with MySQL DBMA. Note that the

attacker can inject different text not just single quote. The next

step is to balance the query by add another single quote or just

add --+,# to comment the rest of the query .now the attacker

could use order by command to get the number of column:

http:// localhost/sqlia /Less-1/?id=1' order by 1 --+.The attacker

keep entering number of column until he get this error message

(Unknown column '4' in 'order clause). That mean the number

of column is 3 (http://localhost/sqlia /Less-1/? id=1' order by 1, 2,

3 --+). Using this information, an attacker can then create

further attacks that target specific pieces of information like

database name, DBMA version or table content.

4.3 Union Query [4, 5, 8, 9, 11]

In union-query attacks, an attacker may use SQL injection to

extract database user, version, name, table information etc.

from another table by using UNION within the query. With

this technique, an attacker can trick the application into

returning data from a table different from the one that was

intended by the developer .The attacker first injects into

persistent storage such as a table row and collects some data

and using this he will do further to collect more from the

database. This statement treated as second query, so to make it

work we can make the first statement fouls. The result of this

attack is that the database returns a dataset that is the union

of the results of the original first query and the results of the

injected second query. This example will return the version of

the DBMS: http://localhost/sqlia/Less-1/?id= -1' union select 1,

version (), 3.The result of this injection will be 5.5.16.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9779

4.4 DOUBLE QUERY [1, 13, 14]

This is a very handy technique to have in your arsenal as there

will be many times Union injections just won’t work and blind

injections are very time consuming and hard to interpret

sometimes. Double Query SQL Injection is a method for

querying SQL databases by using two queries together

combined in a single query statement. This basically ends up

confusing the backend database and causing errors to be

thrown. The errors received will contain the information we are

trying to extract, just like previous error-based SQL injection.

 Although is definitely faster than Blind & Time-Based

injections, attackers will not have the ability to access anything

using GROUP_CONCAT () which means we will need to

heavily rely on CONCAT() and the LIMIT feature to get all of

the info from the database. as example:

http://localhost/sqlia/Less-1/?id=1' and(select 1 FROM(select

count(*), concat ((select (select concat(database())) FROM

information_schema.tables LIMIT 0,1),floor(rand(0)*2))a FROM

information_schema.tables GROUP BY a)b)--+

The technique used by attackers in double injection is

very simple. They use both floor () and rand () to query

information_schema. tables which are being nulled out in this

request as floor (rand (0)*2) is null, which allows the rest of our

request to be processed and return the current database name.

The basic syntax will repeat itself so you will pick it up over

time if it doesn’t catch on right away. Now that we know it is

vulnerable we can test for additional databases, as well as

version info and user info. Once the basic system info is grasped

we can move on to grabbing tables, columns, and finally

extraction of data.

4.5 Blind injection [1, 4, 12, 15, 21]

In normal SQL injection hackers rely on error messages

returned from the database in order to give them some clues on

how to proceed with their SQL injection attack. But with blind

SQL injection the hacker does not need to see any error

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9780

messages in order to run his/her attack on the database – and

that is exactly why it is called blind SQL injection. So, even if

the database error messages are turned off a hacker can still

run a blind SQL injection attack. In this situation, the attacker

injects commands into the site and then observes how the

function/response of the website changes. By carefully noting

when the site behaves the same and when its behavior changes,

the attacker can deduce not only whether certain parameters

are vulnerable, but also additional information about the values

in the database.

4.6 Boolean Blind Injection

In this technique, the information must be inferred from the

behavior of the page by asking the server true/false questions.

If the injected statement evaluates to true, the site continues to

function normally. If the statement evaluates to false, although

there is no descriptive error message, the page differs

significantly from the normally-functioning page.

This technique is very slow because you must take in

consideration all the possibility.as example this will ask the if

the database first letter is (e) : http://localhost/sqli /Less-5/?id=1'

and (ascii(substr((select table_name from

information_schema_tables),1,1)))=101 --+ .

We can speed the technique by use binary search. The

attacker is asking if the ASCII value of the character is greater-

than or less-than-or-equal-to the value of X. If the value is

greater, the attacker knows this by observing an additional 5

second delay in the response of the database. The attacker can

then use a binary search by varying the value of X to identify

the value of the first character. So as example we can ask the

database first name in ascii is larger than 112 which equal to

the letter(r), by doing this we can get to the first letter faster.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9781

4.7 Timing blind Injection Attacks

A timing attack allows an attacker to gain information from a

database by observing timing delays in the response of the

database. This attack is very similar to Boolean blind Injection,

but uses a different method of inference. It relies on the

database pausing for a specified amount of time, then returning

the results, indicating successful SQL query executing. Using

this method, an attacker enumerates each letter of the desired

piece of data using the following logic:

 If the first letter of the first database's name is an 'A',

wait for 10 seconds. If the first letter of the first database's

name is a 'B', wait for 10 seconds etc. There are 2 functions in

MySQL which gives significant delay

1. Sleep ().

2. Benchmark ().

Sleep () gives you strictly fixed amount of delay while

benchmark () varies amount of delay depending on load on the

server. The detection criteria for this type of the injection are

going to be the delayed response of the website after injection.

More than detecting SQL injection using delay

operation, it is more used to dig information out of database.

Confirmation of the information exists in database is indicated

by the delay in response given by database after injection. It is

more of the ex-filtration methodology than discovery. Let us

consider an example how to take out information from database

using delay. Let us inject something interesting using sleep ()

in query.

http://localhost/sqli /Less-5/? Id=1' UNION select if

(SYSTEM_USER='root', sleep (100), 1);-- This time our injection

string is bit lengthy but very much effective and damaging. We

have injected " 1' UNION select if (SYSTEM_USER='root', sleep

(100), 1); -- " as an injection. Union clause will combine the

following query input and give combined result. If will check if

logged in system user is 'root' or not. If the user is root then it

will execute sleep for give amount of time else it will just give '1'

to union clause.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9782

4.8 Common Blind SQL Injection Scenarios

Here are three common scenarios in which blind SQL injection

is useful:

1. When submitting an exploit that renders the SQL

query invalid a generic error page is returned, while

submitting correct SQL returns a page whose content is

controllable to some degree. This is commonly seen in

pages where information is displayed based on the user’s

selection; for example, a user clicks a link containing an

id parameter that uniquely identifies a product in the

database, or the user submits a search request. In both

cases, the user can control the output provided by the

page in the sense that either a valid or an invalid

identifier could be submitted, which would affect what

was retrieved and displayed.

2. A generic error page is returned when submitting an

exploit that renders the SQL query invalid, while

submitting correct SQL returns a page whose content is

not controllable. You might encounter this when a page

has multiple SQL queries but only the first query is

vulnerable and it does not produce output. A second

common instance of this scenario is SQL injection in

UPDATE or INSERT statements, where submitted

information is written into the database and does not

produce output, but could produce generic errors.

3. Submitting broken or incorrect SQL does not produce

an error page or influence the output of the page in any

way. Because errors are not returned in this category of

blind SQL injection scenarios time-based exploits or

exploits that produce out-of-band side effects are the

most successful at identifying vulnerable parameters.

5. Defending Against SQL Injection Attacks [1, 4, 17]

The good news is that there actually is a lot that web site

owners can do to defend against SQL injection attacks.

Although there is no such thing as a 100 percent guarantee in

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9783

network security, Formidable obstacles can be placed in the

path of SQL injection attempts.

1. Comprehensive data sanitization: Web sites must

filter all user input. Ideally, user data should be filtered

for context. For example, e-mail addresses should be

filtered to allow only the characters allowed in an e-mail

address, phone numbers should be filtered to allow only

the characters allowed in a phone number, and so on.

2. Use a web application firewall: A popular example

is the free, open source module ModSecurity which is

available for Apache, and Microsoft IIS web servers.

ModSecurity provides a sophisticated and ever-evolving

set of rules to filter potentially dangerous web requests.

Its SQL injection defenses can catch most attempts to

sneak SQL through web channels.

3. Limit database privileges by context: Create

multiple database user accounts with the minimum

levels of privilege for their usage environment. For

example, the code behind a login page should query the

database using an account limited only to the relevant

credentials table. This way, a breach through this

channel cannot be leveraged to compromise the entire

database.

4. Avoid constructing SQL queries with user input:

Even data sanitization routines can be flawed. Ideally,

using SQL variable binding with prepared statements or

stored procedures is much safer than constructing full

queries.

5. Craft error messages carefully: Hackers can and

will use your own error messages against you to better

dial in future attacks. That's why both the development

team and DBAs need to think about the error messages

they're returning when users input something

unexpected.

6. Stored Procedures Protect Against SQL

Injection: The usefulness of a stored procedure as a

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9784

protective measure has everything to do with how the

stored procedure is written. Write a stored procedure

one way, and you can prevent SQL Injection. Write it

another way, and you are still vulnerable.

The wrong way

Suppose the verifyUser stored procedure was created by

dynamically building a SQL string within the stored procedure,

like this:

CREATE PROCEDURE verifyUser

@username varchar(50),

@password varchar(50)

AS

BEGIN

 DECLARE @sql nvarchar(500);

 SET @sql = 'SELECT * FROM UserTable WHERE UserName

= ''' + @username + '''

 AND Password = ''' + @password + ''' ';

 EXEC(@sql);

END

GO

Now, when I execute my PHP script with this input…

…the SQL that the stored procedure executes is this:

SELECT * FROM UserTable WHERE UserName = 'Brian' --'

AND Password = 'any password'

The last half of the query is commented out! As long as my user

name matches some user name in the database, I’m in.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9785

By building the SQL query as a string in the stored procedure

and concatenating parameter values in that string, I run the

same risks that are inherent in concatenating parameter values

in application code – I’m vulnerable to SQL injection. I admit

that building a query dynamically as shown in the stored

procedure above is somewhat contrived, but it is meant to show

what is possible (and what NOT to do). Fortunately, avoiding

the problem above is easy…

The right way

Now suppose the verifyUser stored procedure was created like

this:

CREATE PROCEDURE verifyUser

@username varchar(50),

@password varchar(50)

AS

BEGIN

 SELECT * FROM UserTable WHERE UserName =

@username AND Password =

@password;

END

GO

Now, an execution plan for the SELECT query exists on the

server before the query is executed. The plan only allows our

original query to be executed. Parameter values (even if they

are injected SQL) won’t be executed because they are not part

of the plan. So, if I submit a username like I did in the example

above (Brian' --), it will be treated as user input, not SQL code.

In other words, the query will look for a user with this

password instead of executing unexpected SQL code.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9786

6. AUTOMATIC SQL INJECTION [18, 19]

SQLMAP: it’s an open source penetration testing tool that

automates the process of detecting and exploiting SQL injection

flaws and taking over of database servers. It comes with a

powerful detection engine, many niche features for the ultimate

penetration tester and a broad range of switches lasting from

database fingerprinting, over data fetching from the database,

to accessing the underlying file system and executing

commands on the operating system via out-of-band connections.

Havij: it’s an automated SQL Injection tool that helps

penetration testers to find and exploit SQL Injection

vulnerabilities on a web page.

 It can take advantage of a vulnerable web application.

By using this software, user can perform back-end database

fingerprinting, retrieve DBMS login names and password

hashes, dump tables and columns, fetch data from the

database, execute SQL statements against the server, and even

access the underlying file system and execute operating system

shell commands.

The distinctive power of HAVIJ that differentiates it

from similar tools lies in its unique methods of injection. The

success rate of attack on vulnerable targets using HAVIJ is

above 95%. Netsparker: is a false positive free web application

security scanner that can be used to identify web application

vulnerabilities such as SQL Injection and Cross-site scripting in

your web applications and websites.

7. BYPASS FILTRATION [4, 20]

Functions and keywords filtering prevents web applications

from being attacked by using a functions and keywords black

list. If an attacker submits an injection code containing a

keyword or SQL function in the black list, the injection will be

unsuccessful.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9787

However, if the attacker is able to manipulate the

injection by using another keyword or function, the black list

will fail to prevent the attack. In order to prevent attacks, a

number of keywords and functions has to be put into the black

list. However, this affects users when the users want to submit

input with a word in the black list. They will be unable to

submit the input because it is being filtered by the black list.

The following scenarios show cases of using functions and

keywords filtering and bypassing techniques. We will take PHP

language as example of filtration by using preg_match function

or preg_replace to filtrate the input.

Key word filter PHP filter code Filtered injection Bypassed injection

and preg_match('/(and)/i', $id) 1 and 1 = 1 1 && 1 = 1

Or preg_match('/(or)/i', $id) 1 or 1 = 1 1 || 1 = 1

and, or, union preg_match('/(and|or|union union select user, 1 || (select user from

)/i', $id) password from users users where user_id =

 1) = 'admin'

and, or, union, preg_match('/(and|or|union| 1 || (select user from 1 || (select user from

where where)/i', $id) users where user_id = 1) users limit 1) =

 = 'admin' 'admin'

and, or, union, preg_match('/(and|or|union| 1 || (select user from 1 || (select

where, limit, where|limit|group by)/i', users group by user_id substr(gruop_concat(

group by $id) having user_id = 1) = user_id),1,1) user

 'admin' from users) = 1

Whitespace preg_replace('/[\s]/',"", $id) union select user, Union%a0select%a0

 password from users user,%a0password

 %a0from%a0users

From the above table we can see it’s very easy to bypass

filtration. Attackers can use manual SQL injection to bypass

filtration by using the technique in the above table or others. So

filtration is not enough to stop SQL injection. But the problem

is not bypass filters because if you detected SQL vulnerabilities

by using Automatic SQL injection you can fix it. So we must

check first the capability of the software that do Automatic SQL

injection to determine if it can bypass filtration.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9788

8. PROPOSED SOLUTION:

Most of the software used to scan for SQL vulnerability doesn't

by bass filtration even if it's weak. At the same time depending

on filtration to protect against SQLI is easy to bypass it,

because of that I create software than can bypass most

filtration by changing the input parameter to ASCII code, and

inject it in the website. I have called it SQL Bullet. It can use

Get, or Post in this process. SQL Bullet use based error

injection first and then tries Blind SQL injection. SQL injection

can scan for SQL vulnerability for more than one page, even if

the pages using post, or get. This program can be used to check

for SQL vulnerability by using automatic SQLI. The program

has three steps.

Step 1: Entering website data

In this step user fill application data about the site and it have

more than one page to scan. The program has its own web

browser to check if the web site is valid.

Step 2: attempt to hack the site

In this step the program tries to hack the site and give

information about the process.

Step 3: report

In this step the program give report about the hack attempt

and the code used to hack the site.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9789

9. CONCLUSION AND FUTURE WORK

In this paper, i have presented current techniques of SQL

injection as well as a solution methodology for preventing

SQLIAs. To perform this evaluation, I first identified the

various types of SQLIAs Known to date. To show how dangers

SQLIAs can be I studied the different mechanisms used for

SQLI and Common Blind SQL Injection Scenarios. Also discuss

the mechanisms used in protection. The program I designed can

scan any website for SQLI vulnerability and give report about

it. It can bypass most type of filtration by convert the injected

parameter to ASCII code. Future work focuses on bypass weak

firewall used to prevent SQLI.

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9790

10. REFERENCES

[1] Tian wei , Yang Ju – Feng, Xu Jing, S I Guan – Nan, "Attack

Model Based Penetration Test for SQL Injection Vulnerability",

Computer and software conference workshops (COMPSACW),

2012 IEEE 36th .

[2] Teenage hacker facing court case for data theft.” Taipei

Times, January 22, 2006

[3] OWASP – Open Web Application Secuirty Project. Top ten

most web application vulnerabilities.

https://www.owasp.org/index.php/Testing_for_SQL_Injection_%

28OWASP-DV-005%29#out_of_band

exploitaion_technique,April 2014

[4] SQL Injection Attacks and Defense. Justen clarke, Dave

hartely, Joseph Hemler, Hroon , (2009).

[5] W. G. J. Halfond, A. Orso and P. Manolios,“Using Positive

Tainting and Syntax-aware Evaluation to Counter SQL

Injection Attacks”, Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, 2006.

[6] A. Ciampa, C.A. Visaggio and M.D. Penta, “ A Heuristic-

based Approach for Detecting SQL-Injection Vulnerabilities in

Web Applications,” in ACM Proceedings of the ICSE Workshop

on Software Engineering for Secure Systems, pp. 43-49, 2010.

[7] http://blog.didierstevens.com/2010/02/02/quickpost-quasi-

tautologies-sql-injection/

[8] C Anley. Advanced SQL Injection in SQL Server

Applications. White Paper Next Generation Security Software

Ltd., 2002. http://www.nextgenss.com/papers/advanced sql

injection.pdf.

[9] S. McDoland, SQL Injection. Modes of Attack, defence and

why it matters. White paper, GovernmentSecurity.org, April

2002

[10] Chris Anley. “(More) Advanced SQL Injection”. Chris

Anley. NGS Software URL: http://www.nextgenss.com/ pagers/

more_advanced_sql_injection.pdf

Islam Abdalla Mohamed Abass- SQL Injection Attacks and Bypass Filtration

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 11 / February 2017

9791

[11] Debasish Das, Utpal Sharma , D.K. Bhattacharyya, An

Approach to Detection of SQL Injection Attack based on

Dynamic Query Matching, paper 2010

[12] Wisdom Kwawu Torgby, Nana Yaw Asabere,“ Structured

Query Language Injection (SQLI) Attacks:Detection and

Prevention Techniques in Web, International Journal of

Computer Applications 2013.

[13] http://kaoticcreations.blogspot.com/p/double-query-based-

sql-injection.html.

[14]http://www.madleets.com/Thread-SQL-INJECTION-

Double-Query-Error-Based.

[15] http://flagdefenders.blogspot.com/2012/12/sql-injection-

part-3-time-based.html.

[16] Imperva, SQL Injection Signature Evasion Whitepaper

the Wrong Solution to the Right Problem, 2004

[17] http://www.esecurityplanet.com/hackers/how-to-prevent-

sql-injection-attacks.html.

[18] http://sqlmap.org/.

[19] https://www.netsparker.com/sql-injection/.

[20] http://www.exploit-db.com/papers/17934/.

[21] Martin G. Nystrom, “SQL Injection Defenses”, O'Reilly

Media, 2007.

