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Abstract 

           The Anderson model has been of utmost importance in the 

understanding of the presence of a magnetic impurity in metals. In this 

work we investigate the properties of a superconductor in the presence 

of the magnetic impurity interacting with the conduction electrons, 

using the mean field formalism. We observe the particle-hole symmetry 

of the superconductor to be broken by the impurity. The boundary 

between magnetic and non-magnetic configurations, contrary to what 

occurs in metal, is asymmetric around / = 0.5d U . The spectrum of 

0( ) /T   as a function of / cT T  maintains the universal behavior as 

was found in the Bardeen-Cooper-Schrieffer theory. The critical 

temperature decreases with the increase in   and tends to zero as 

Γ>>Δ0.  

  

Key words: localized magnetic moments, superconductors, Kondo 

Regime 

 

1.  INTRODUCTION 

Impurities have often been the main obstacle in revealing the 

beautiful physics that exists in cleaner systems. However, several 



H. O. Frota, Angsula Ghosh, C. Mota- Localized Magnetic Moments Interacting 

with Superconductors outside the Kondo Regime 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. VIII, Issue 2 / May 2020 

674 

properties are either caused or probed with the use of various 

impurities and are sometimes crucial in unraveling the science, for e.g 

the billion dollar semiconducting electronics industry is one of them. 

The physics of superconductors still remains unexplained and is still 

shrouded in mystery despite intense research over the past several 

decades and is never pure. The substitutional impurities allow us to 

study the superconductivity over a wide range of parameters paving 

the way thereby to check the validity of the existing theories (BCS) [1] 

as well as the new ones (high cT ). The study of disorder has gained an 

impetus recently in strongly correlated electron systems. The 

impurities in conventional metal lead to higher resistivity and the 

magnetic impurities destroy the coherence of the superconducting 

state. The high temperature superconductors still remain the primary 

focus of our study. However, there is no complete microscopic 

description and certainly no consensus on the mechanism of the pair 

formation. The reaction of the system to the introduction of impurities 

can be an important test of order, or even growing correlations 

towards such an order in the superconducting state. The prerequisite 

for such a test is the detailed understanding of the behavior of the 

simple superconductors with impurities. After intense research in the 

early BCS years, the subject was considered closed in the mid-60s. 

However, recently there has been a revival of the interest in s-wave 

superconductors with magnetic impurities   with many new 

theoretical and experimental results changing our perspective of the 

knowledge. The s -wave properties in the presence of the impurities 

continue to be investigated [2] and can play vital role in the 

understanding of the new superconductors. 

The classic problem of the impurities in s -superconductors 

was considered long back in the works of [3, 4]. The direct 

measurements of the quasi-particle excitations around a magnetic 

impurity obtained by Yazdani et. al. [5] reinvigorated the field. Later 

the scanning tunneling microscopy (STM) measurements were used to 

study the electronic properties of exotic materials with impurities [6, 

7, 8]. The substitution of the divalent metals [Zn, Ni] for Cu in CuO 2  

planes offers an important way of introducing impurities in 

unconventional superconductors [9, 10, 11]. More recently, we observe 

a revival of interest of the study of the impurity in a conventional 

superconductor motivated in part by possible applications to 
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topological quantum computation [12, 13, 14, 15]. The interplay 

between the magnetic moments and superconductivity can lead to 

emergence of exotic phases and excitations and thus provide special 

advantages. Recent experimental investigations of the problem have 

been of utmost importance opening a new chapter in 

superconductivity [16]. Various works have been performed to study 

the effect of the impurities in conventional s wave superconductors 

[17, 18, 19, 20, 21, 22] 

In this work we revisit the problem of localized magnetic 

moments interacting with a superconductor. We also consider a 

Coulomb interaction U  that breaks the particle hole symmetry. A 

realistic model for an impurity site is the Anderson model [23, 24]. 

The model is extremely rich in behavior and allows a natural 

interpolation between the potential and the magnetic scattering [25]. 

The model has been analyzed thoroughly using the numerical 

renormalization group technique [26]. However, analytical study still 

lacks. In this case the impurity electrons couple to the conduction 

band and may modify the spin configuration. Studies on various 

superconductors for e.g Al doped SrRuO 4  [27], Ce based "115" heavy 

fermion materials [28], Mn, Gd and Ag atoms on Nb [5] have been of 

utmost importance in our understanding of the superconductors. STM 

has been further developed to probe the quasiparticle scattering 

around a single impurity in Bi 2 Sr 2 CaCu 1 x Zn x O 8   with a spatial 

and energy resolution [7]. The question of the localization continues to 

be investigated both in s  and d  superconductors. Recently the 

Anderson model has been considered for the magnetic impurity study 

of the cuprates [29, 30, 31]. 

In this article we study the effect of a single impurity on 

superconductors. The Anderson model in the presence of the Coulomb 

interaction has been used within a mean-field formalism to study 

phase diagram of the superconductors in the presence of disorder. The 

Greens’s function technique is used to study the properties of the 

superconductor. The outline of the paper is as follows. In section 2 we 

describe the Anderson impurity model suitable for the 

superconductors in detail. The calculated superconducting properties 

for the above model have been described in section 3. We discuss our 

results on the phase diagram, susceptibility, critical temperature and 

also the temperature dependence of the gap parameter in section 4. 
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Finally we summarize our results in section 5. 

 

2.  THE MODEL 

 

The Anderson model has been used in various problems as can be 

found in ref. [24, 23]. It is often used to describe magnetic impurities 

embedded in metallic hosts and applied to the description of Kondo-

type problems, such as heavy fermion systems and Kondo insulators. 

In order to study superconductivity we use the Bardeen-Cooper-

Schrieffer (BCS) Hamiltonian [1]. The theory describes 

superconductivity as a microscopic effect caused by a condensation of 

Cooper pairs BCS theory and assumes that there is some attraction 

between electrons, which can overcome the Coulomb repulsion. In 

conventional superconductors, the above attraction is brought about 

indirectly by the coupling of electrons to the crystal lattice. The 

evidence of a gap at the Fermi level, exponential dependence of the 

specific heat on temperatures, Meissner effect are some of the 

important facts that BCS theory could predict. 

The Hamiltonian of a magnetic impurity coupled to a 

superconductor can be modeled by an Anderson impurity [23] 

hybridized with the conduction band. The superconducting tight 

binding model along with the impurity Hamiltonian can be written as  

= ,SC imp hybH H H H   (1) 

where SCH  is the tight binding superconducting Hamiltonian, impH  

represents the impurity Hamiltonian and hybH  denotes the 

hybridization of the impurity orbital with the conduction band. The 

superconducting Hamiltonian is given by  
† † †=SC k k k k kk k k k

k k k

H c c c c c c  

     
           (2) 

 where 
† ( )k kc c   creates (annihilates) an electron with momentum ,k  

spin   (  or  ) and energy k  (with respect to the chemical 

potential  ) in the conduction band. The chemical potential is set to 

be zero just as the case of half filling. k  is the superconducting gap. 

Since electrons obey Fermi statistics, the creation and annihilation 

operators 
† ( )k kc c   satisfy the anticommutation relations  
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†

' ' ' '[ , ] =k k kkc c     

† †

' ' ' '[ , ] = [ , ] = 0k k k kc c c c      

and particle number operator is given by 
†=k k kn c c   . 

The impurity Hamiltonian is given by  
†=imp d d d d d

H c c Un n 




 

 , (3) 

where 
† ( )d dc c   creates (annihilates) an electron with spin = ,   , 

†=d d dn c c    is the impurity occupation number operator, d  is the 

energy in the impurity orbital and U  is the Coulomb repulsion 

between the electrons in this orbital. The creation and annihilation 

operators 
† ( )d dc c   satisfy the anticommutation relations  

†

' '[ , ] =d dc c    

† †

' '[ , ] = [ , ] = 0.d d d dc c c c      

For simplicity we adopt a mean-field approximation to the electronic 

correlations to obtain 
†= d d dd d d d

Un n U n c c U n n      
      . 

Hence,  
†=imp d d dH c c  



  (4) 

where . 

The hybridization of the impurity orbital with the conduction 

band is represented by  

 † †

,

= ,hyb k d d k

k

H V c c c c   


  (5) 

where V  is the hybridization interaction between the electron in the 

impurity orbital and the electrons in the conduction band. 

 

3.  THE FORMALISM 

 

The tight binding superconducting Hamiltonian can be diagonalized 

by defining new Fermi operators [32]. The transformations can be 

obtained using the Bogoliubov operators and is given by  

             
†=k k kk k

c u v  
  
  

† † † †=k k kk k
c v u     

                                                      (6) 

 where the numerical coefficients ku  and kv  satisfy 
2 2| | | | =1k ku v . 
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Substituting the above operators, the Hamiltonian H  (Eq. (1)) can be 

written in terms of the Bogoliubov operators 
k



 and 

†

k

 

 as  

   † † † †= .k k k d d d k k k kk k d k k d
k k

H E c c V u v c v u c h c    
 

         

        
      
   

,      (7) 

 where 
2

= (1 / ) / 2k k ku E , 
2

= (1 / ) / 2k k kv E , = / 2k k k ku v E  

and 
22=k k kE    . 

The impurity density of states given by  ,r

dImG c   , can be obtained 

from the Fourier transformed retarded Green’s function [24]  

  †, ' = ( ') { ( ), ( ')} .r

d d dG c t t i t t c t c t      

Various physical observables can be written in terms of retarded 

Green’s functions and the correlation functions that involves the 

calculation of the the time-dependence of these functions. Equation of 

motion method is one of the several methods that could be useful for 

this purpose [33]. The main principle of this method is to produce a 

series of coupled differential equations by differentiating the relevant 

correlation function a number of times. Hence, using the above 

method , we obtain  

 

  
  

1

12 21 12 212 4

2
, = ,

' '

r

d d ii '

d ii

G c i V V
i V

 



   
  





    
     

                

 (8) 

where   is an infinitesimal number to ensure proper convergence and  

 

2

11 12

2
21 22

=

k k k

k kk k

kk k

k kk k

v u v

i E i E

uu v

i E i E

   

   

 
 

       
       

     

 

 
     

(9) 

 

2

11 12

2
21 22

=

k k k

' '
k kk k

' '

kk k

k kk k

v u v

i E i E

uu v

i E i E

   

   

 
  

 
 

 
 

       
       

     

 

 
    

 (10) 

and the repeated indices in ii  and 
'

ii  mean a sum over its allowed 

values(1 and 2). The term 12 21( )    that appears in Eq. (8) can be 
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calculated transforming the sum over k  to integral in k  by the 

relation = ( )
D

F kk D
d  


  , where ( )F   denotes the density of states 

at Fermi energy [24, 32, 33]. Hence, adopting this procedure for 12  

and 21  we obtain, 

   
12 2 22 2

( )1
= ( )

2

D
k F k

F k
D

k k kk

d i
E E

  
  

  


 
 

    


          

 (11) 

 

   
21 2 22 2

( )1
= ( ) ,

2

D
k F k

F k
D

k k kk

d i
E E

  
  

  


 
 

    


         

 (12) 

where ( )F   is the density of states of the conduction band at the 

Fermi level and 2D  is the conduction band width. From Eqs. (11) and 

(12), 12 21( ) = 0Im    and 

22 2

12 21( ) = ( ) / ( )
D

F k k kkD
Re d    


       , which is also zero in 

the limit D . In this limit, substituting 12 21 = 0   into Eq. (8), 

 ,rG d   reduces to  

 
1

2, = ( ) .r

d iiG d i V     


                                  (13) 

The impurity density of states ( )d   is given by  

 

 
2

2 2
2 2

( )1
( ) = (1 / ) , = ,

( ) ( )

r ii
d

d ii ii

V Im
ImG d

V Re V Im
 




   

    




               

 (14) 

  

with  

2 2

2 2 2 2

2 2
1

2 2

2 ( )
ln( )

( )

4 ( )
( ) <

F

ii

F

D
if

D

Re

tg if
D

   


 



   






   
 

    


 


  
          

                (15) 
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2 2

2 2

2 ( )

( )= ,

2 ( ) <

F

ii

F

if

Im

if


  






  




  

 


 

 
                 

            (16) 

where we consider =k  . In the limit 
2 2D   ? , Re 0ii  , 

and the impurity density of states ( )d   becomes 

 
22 2

2 2

2 2

2 1
( ) =d

d

for




  

 
 



   
 

  
          

 (17) 

and zero for    , with 
2= ( ) .F V   In contrast to the impurity in 

metal, the density of states of the impurity embedded in a 

superconductor is not a conventional Lorentzian, due to its anomalous 

broadening of the frequency by the factor 
2 2/   . 

The superconducting gap is given by =k ' sc k kk
V c c

  
  , 

where scV  is the pairing interaction. It can be obtained using the 

equation of motion technique for the Matsubara function. The 

Matsubara Green’s functions technique [34] has been developed to 

describe many-body systems in equilibrium at finite temperature [24, 

35]. By Fourier transformation and exploiting the Fermionic 

symmetry one can obtain all the necessary information contained in 

the Green’s functions defined for a discrete set of energies 

proportional to the Matsubara frequencies. We define the two Green’s 

functions  

 †

'
( , ) = ( ) (0)

k k k
c Tr c c 

  
G

                      
                (18) 

 †

'
( , ) = ( ) (0)

k
d Tr d c 
  

G
                                       

 (19) 

and the two anomalous Green’s functions  

 † † †

'
( , ) = ( ) (0)

k k k
c Tr c c 
    

F
                                 

 (20) 

 † † †

'
( , ) = ( ) (0) .

k
d Tr d c 
  

F
                                     

 (21) 

 where Tr  is the time-ordering operator. Performing the Fourier 
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transformation of the the equation of motion of the above Green’s 

functions to Matsubara frequency space ni , and taking into account 

that =k k   and 
† †( , ) = ( , )n nk kk k

c i c i 
   F F , we obtain  

 
†( ) ( , ) = ( , ) ( , )n k n ' k n nk kkk

i c i c i V d i     
  

   G F G
        

    (22) 

( ) ( , ) = ( , )n n nd k
k

i d i V c i   
  

 G G

                                         

 (23) 

† †( ) ( , ) = ( , ) ( , )n k n k n nk k
i c i c i V d i    

   
  F G F

                 
 (24) 

† †( ) ( , ) = ( , ).n n nd k
k

i d i V c i   
   

  F F

                                   

 (25) 

Solving the above equations for 
†( , )nk

c i
 

F  we find 

 
2

2 2

† 2

2 2
= 1

( , ) = ,
( )

k kk
n k sk

sn k n k n k

u v
c i V Z

i E i sE i sE


  




 


 
    

    
F

  

    (26) 

where  

 
2

1

1
=

( )( )
s

n k n ds

Z
i s i s V      

 

 

2 2

1 = k k

k n k n k

u v

i E i E 

 
  

  
  

and ( ) ( )
=d d

    
. The first term corresponds to the contribution from 

the pure case and the last term appears from the interaction of the 

conduction electron with the impurity, neglecting terms of fourth 

order in V . The superconducting order parameter k  is defined as 

< <

†= = ( , = 0 ),
k D k D

k sc sck k k
k k

V c c V c

   

 

    
   F

                        

 (27) 

where D  is the Debye energy and 
†( , = 0 )
k

c  

 
F  is the Fourier 

transform of 
†( , )nk

c i

 
F  with the Matsubara frequency ni . 

Substituting Eq. (26) into Eq. (27) and carrying out the Matsubara 

summation, taking k  independent of k , we obtain 
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 

2

2
= 1 = 1

2

2
2 2

( ' ) ( ' )1
( ) '

( ) 2 [2 ( )]

( ) ( )

D Dk k k k F k
F k

D D'sF sc k k k dss

D k ds k F ds

D
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where ( ) =1/ (exp( ) 1)Fn     is the Fermi distribution and 

=1/ .Bk T  

 

4.  RESULTS AND DISCUSSION 

 

The impurity magnetization is defined as =
d d

m n n
 
 , where 

dn   is the occupation number of the impurity, given by 

( ) ( )d Fn d    . The impurity is magnetic when .
d d

n n
 
  All 

our results in this work are in eV, unless mentioned otherwise. In Fig. 

(1) we present the boundary between the magnetic and nonmagnetic 

impurity states at zero temperature as a function of the parameters 

/d U  and /U . The solid line represents the boundary for the 

impurity embedded in a metal and the remaining curves represent 

that of a s-wave superconductor, with different values of 

/ = 0.1,0.2,0.5  , and 1.0  (dashed, dotted, dashed-dotted, and 

dashed-double-dotted line, respectively). The impurity is magnetic 

inside and non-magnetic outside the boundary. For metal, the 

transition curve is symmetric around / = 0.5d U . On the contrary, 

in the superconductor the symmetry is broken by the presence of the 

impurity. In metal the boundary is always less than / =1d U  and in 

superconductor it can assume values greater than one due to the 

broadening of the impurity density of states for energy close to   by a 

factor 
2 2/   . In the limit /U  0  the boundary in the 

superconductor converges to one or zero, as in metal, indicating the 

maintenance of the electron-hole symmetry in this limit. Thereby the 

quantum mechanical fluctuations like the Kondo effect which should 

be important at low-temperatures is beyond the scope of this scenario 

and the temperature considered is above the Kondo temperature [4]. 

It exhibits a sharp transition between the nonmagnetic states and the 

magnetic states of an impurity. The transition should be gradual as 
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the fluctuation effect are indeed important near the transition.  

 
Figure  1: The transition curve between the magnetic and non magnetic region 

hybridized with the conduction electrons of a metal (solid line) and a superconductor 

with different values of = 0.1  (dashed line), 0.2  (dotted line), 0.5  (dashed dotted 

line) and 1.0  (dashed dotted dotted line). 

  

The occupation number and the magnetic susceptibility as a function 

of 0 , the gap at = 0T , are shown in Fig. (2) for = 0.02d  , 

= 0.002  and = 0.016U . For 0 = 0 , representing an impurity in 

metal, =
d d

n n
 

, the impurity is nonmagnetic. However, for the same 

parameters, in a s-wave superconductor, depending on the value of 

the gap 0 , 
d d

n n
 
  and the impurity becomes magnetic. Varying 

0  the occupation number splits at 0 = d d
U n


   and collapses 

at 0 = d d
U n


   (with the convention <

d d
n n

 
), and the 

impurity is magnetic for specific values of 0 . The magnetization of 

the impurity varies between these two values. The behavior of the 

magnetic susceptibility at the zero-field limits, 

=0= ( / )B Bdn dB
    ( B  is the Bohr magneton and B  is an 

applied magnetic field) can be written as  

2

2=

1

= .

1

d
B

d

d d

dn
U

dn d

dn dnd
U

d d



 

  

 

 
















ò

ò

ò ò
                           

(29) 

In Fig. 2(b) the magnetic susceptibility presents two peaks, at 0 close 

to the two different energies d d
U n


  and d d

U n


 . The fact 

that the impurity becomes magnetic between 
d



 and 

d



 values of 
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0  is evident from Fig. (3), where for = 0.02d  , = 0.002  and 

different values of U  we present the magnetization as a function of 

0 . 

 
Figure  2: (a)The occupation number and (b) the magnetic susceptibility as a function 

of 0 , taking = 0.02, = 0.002d    and = 0.016U . 

 

Figure  3: Magnetization as a function of 0  for = 0.02, = 0.002d    and 

different values of U . 

   

In Fig. (4) we present the gap ( )T  as a function of temperature T  

for = 0.2d  , = 0.002 , = 0.15scV   and different values of U  

( 0.0,0.1  and 0.3 ). Scaling ( )T  by 0  and T  by cT  the gap presents 

an universal behavior. Increase in U  decreases the critical 

temperature cT  and 0  as shown in the insert (a) of this figure. 

Curiously the universal curve approaches the function 
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3

0

( )
= 1

c

T T

T

 
  

  
                        (30) 

as is presented in insert (b). In the limit cT T , 

1/2

0

( )
3 1 ,

c

T T

T

 
  

  
                        (31) 

which is very close to the asymptotic result for BCS model ([32]), 

where instead of 3  we observe 1.74.  

 

 

Figure  4: The gap ( )T  as a function of temperature T  for = 0.2d  , 

= 0.002 , = 0.15scV   and different values of = 0.0U , 0.1 , 0.3 . 

   

In Fig. (5) we show ( )T  as a function of T  for = 0.2d  , = 0.1U , 

= 0.15scV   and different values of = 0.002 , 0.010 , 0.02 . The gap 

and the critical temperature decrease with the increase in   as can 

be seen in 5(a). As is shown in Fig. 5(b), the universal behavior is 

maintained as   varies. In the insert in 5(b) we present the critical 

temperature as a function of  . It decreases linearly with small   

and presents an inflection around / ( =1)   . For Γ>>Δ(Γ=0) the 

critical temperature goes to zero, the gap disappears, and the system 

behaves as a metal. 
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Figure  5: (a) ( )T  as a function of T  for = 0.2d  , = 0.1U , = 0.15scV   and 

different values of  . (b) Universal behavior of 

0

( )T


 with   In the insert, the 

critical temperature decreases and goes to zero as Γ>>Δ(Γ=0). 

   

5.  CONCLUSION 

 

We studied a magnetic impurity embedded in a superconductor. The 

magnetic impurity breaks the electron-hole symmetry, as was shown 

by the asymmetry of the boundary between the magnetic and non-

magnetic regimes, for various values of 0 . The ground state of the 

impurity is magnetic for 0  in the interval between 

0d dd d
U n U n 

 
     . The universal behavior is 

maintained with the inclusion of impurity, as observed in the 

spectrum of ( )T  normalized by 0  as a function of /T Tc  for 

different values of U  and  . The gap decreases with the increase in 

  and finally disappears recovering the behavior of a metal.  
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