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Abstract 

The aim of this modest study was to shed some light on one of 

the useful tools of complex analysis, which is the method of conformal 

mapping (Also called conformal transformation). Conformal 

transformations are optimal for solving various physical and 

engineering problems that are difficult to solve in their original form 

and in the given domain. This work starts by introducing the meaning 

of a ''Conformal Mapping'', then introducing its basic Properties. In the 

second part, it deals with a set of various examples that explain the 

behavior of these mappings and show how they map a given domain 

from its original form into a simpler one. Some of these examples 

mentioned in this study showed that conformal transformations could 

be used to determine harmonic functions, that is, to solve Laplace's 

equation in two dimensions, which is the equation that governs a variety 

of physical phenomena such as the steady-state temperature distribution 

in solids, electrostatics and inviscid and irrotational flow (potential 

flow). Other mathematical problems are treated. All problems that are 

dealt with in this work became easier to solve after using this technique. 

In addition, they showed that the harmonicity of a function is preserved 

under conformal maps and the forms of the boundary conditions change 

accordingly. 

                                                             
1 Corresponding author: w.ali.mohammed.ayad@gmail.com 
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I. INTRODUCTION 

 

A conformal mapping, also called a conformal transformation, or 

biholomorphic map, is a transformation that preserves angles between 

curves. A mapping by an analytic function is conformal at every point 

of the domain of definition where the derivative does not vanish. 

Conformal mappings are extremely important in complex analysis, as 

well as in many areas of physics and engineering [10]. 

   It can also be said that a conformal mapping simplifies some 

solving processes of problems, mapping complex polygonal geometries 

and transforming them into simpler geometries, easily studied. These 

transformations became possible, due to the conformal mapping 

property to modify only the polygon geometry, preserving the physical 

magnitudes in each point of it [1]. 

Two researchers have worked in the field of conformal 

mappings, and they elucidated the advantages of conformal mappings 

over other advanced engineering skills. The work was to  determine  

how  the critical  stress  is spread  with  respect  to the  rupture  angle  

using  a  conformal  transformation. In their words, a conformal 

transformation has proved to be a good engineering tool to solve footing 

on slope problems, and they concluded that the critical normal stress 

distribution of footing on a slope is spread evenly along the slip surface 

with the mapping technique [2]. 

   One of the applications in which a conformal mapping was used 

is the complex velocity potential of the flow of an ideal fluid. It was 

found that the complex velocity potential can be determined by solving 

a problem in either a horizontal or vertical strip [3]. 

   Another application using a conformal mapping is the one used 

to solve the so-called third kind boundary-value problem of Laplace’s 

equation. Where the work performed provides a new method for solving 

the complex electrostatic field boundary-value problem and realizing 

the visualization of that. It is a new way of solving the complex 

electrostatic field boundary-value problem [4]. 
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In this study, the main purpose was to focus on the use of analytic 

functions when certain conditions are imposed on them. In particular, 

it aimed at elucidating the topic of conformal mappings. Various 

examples are given to show how conformal maps change given domains 

and help to solve some boundary-value problems, which are difficult to 

solve in their original domains. 

 

Definition.  [Conformal Mapping] [10]. Let 𝑤 = 𝑓(𝑧) be a complex 

mapping defined in a domain 𝐷 and let 𝑧0 ∈ 𝐷. We say that 𝑤 = 𝑓(𝑧) is 

conformal at 𝑧0 if for every pair of smooth curves 𝐶1 and 𝐶2 in 𝐷 

intersecting at 𝑧0 the angle between 𝐶1 and 𝐶2 at 𝑧0 is equal to the angle 

between the image curves 𝐶1
′ and 𝐶2

′ at 𝑓(𝑧0) in both magnitude and 

sense. 

 

Preservation of Angles 

The two curves intersect at (𝑢0 ,𝑣0), and the angle at which they 

intersect there, is the angle 𝛼 between the two tangents there. 

 

∴ 𝛼 = 𝛼1 −𝛼2 , 

 

 

 

 

 

 

 

 

 

 

Figure 1: The w-plane. 

where                                

tan𝛼1 = (
𝑑𝑣

𝑑𝑢
)
1

= 𝜑1
′(𝑢), 

tan𝛼2 = (
𝑑𝑣

𝑑𝑢
)
2
= 𝜑2

′(𝑢). 

Therefore                  tan𝛼 =
tan𝛼1−tan𝛼2

1+tan𝛼1tan𝛼2
=

𝜑1
′ (𝑢)−𝜑2

′ (𝑢)

1+𝜑1
′ (𝑢)𝜑2

′ (𝑢)
,  

evaluated when 𝑢 = 𝑢0. 
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If 𝑤 = 𝑢 + 𝑖𝑣 = 𝑓(𝑧) is analytic, then 𝑣 = 𝜑𝑘(𝑢), 𝑘 = 1,2 will have an 

image curve in the 𝑧 − 𝑝𝑙𝑎𝑛𝑒 which is given by 𝑣(𝑥, 𝑦) = 𝜑𝑘{𝑢(𝑥, 𝑦)} ⇒

𝑦 = 𝑓𝑘(𝑥),𝑘 = 1,2. 

 

If the two curves 𝑣 = 𝜑𝑘(𝑢),𝑘 = 1,2, intersect at (𝑢0, 𝑣0), then the 

curves 𝑦 = 𝑓𝑘(𝑥),𝑘 = 1,2, intersect at (𝑥0,𝑦0), where 𝑢0 = 𝑢(𝑥0 , 𝑦0),𝑣0 =

𝑣(𝑥0 ,𝑦0). 

𝑑𝑣 = 𝑑𝜑𝑘{𝑢(𝑥, 𝑦)}, 
∂𝑣

∂𝑥
𝑑𝑥 +

∂𝑣

∂𝑦
𝑑𝑦 = 𝜑𝑘

′(𝑢){
∂𝑢

∂𝑥
𝑑𝑥+

∂𝑢

∂𝑦
𝑑𝑦}, 

∂𝑣

∂𝑥
+
∂𝑣

∂𝑦
𝑦′(𝑥)= 𝜑𝑘

′(𝑢){
∂𝑢

∂𝑥
+
∂𝑢

∂𝑦
𝑦′(𝑥)}. 

Let  
∂𝑢

∂𝑥
= 𝑎,

∂𝑢

∂𝑦
= 𝑏,

∂𝑣

∂𝑥
= 𝑐,

∂𝑣

∂𝑦
= 𝑑, therefore 

𝜑𝑘
′ (𝑢) =

𝑐 + 𝑑𝑦′(𝑥)

𝑎 + 𝑏𝑦′(𝑥)
=
𝑐 + 𝑑𝑓𝑘

′(𝑥)

𝑎 + 𝑏𝑓𝑘
′(𝑥)

. 

But 

𝑎 =
∂𝑢

∂𝑥
=
∂𝑣

∂𝑦
= 𝑑, 

𝑏 =
∂𝑢

∂𝑦
= −

∂𝑣

∂𝑥
= −𝑐, 

Therefore 

𝜑𝑘
′ (𝑢) =

𝑎𝑓𝑘
′(𝑥)− 𝑏

𝑎 + 𝑏𝑓𝑘
′(𝑥)

. 

Then                        𝜑1
′ (𝑢)− 𝜑2

′ (𝑢) =
(𝑎2+𝑏2)(𝑓1

′(𝑥)−𝑓2
′(𝑥))

(𝑎+𝑏𝑓1
′(𝑥))(𝑎+𝑏𝑓2

′(𝑥))
. 

Also                        1 + 𝜑1
′ (𝑢)𝜑2

′ (𝑢) =
(𝑎2+𝑏2)(1+𝑓1

′(𝑥)𝑓2
′(𝑥))

(𝑎+𝑏𝑓1
′(𝑥))(𝑎+𝑏𝑓2

′(𝑥))
.  

∴
𝜑1
′ (𝑢)−𝜑2

′(𝑢)

1+𝜑1
′ (𝑢)𝜑2

′ (𝑢)
=

(𝑎2+𝑏2)(𝑓1
′(𝑥)−𝑓2

′(𝑥))

(𝑎2+𝑏2)(1+𝑓1
′(𝑥)𝑓2

′(𝑥))
  =

𝑓1
′(𝑥)−𝑓2

′(𝑥)

1+𝑓1
′(𝑥)𝑓2

′(𝑥)
= tan𝛼, 

Provided that: 𝑎2 + 𝑏2 = (
∂𝑢

∂𝑥
)
2
+ (

∂𝑢

∂𝑦
)
2
= 𝑢𝑥

2 + 𝑣𝑥
2 = |𝑓′(𝑧)|2 ≠ 0.  

∴ The curves 𝑦 = 𝑓𝑘(𝑥), 𝑘 = 1,2 intersect at (𝑥0 ,𝑦0) at an angle 𝛼 without 

any change provided that  𝑓′(𝑧0) ≠ 0, 𝑧0 = (𝑥0 ,𝑦0). 

 

Remark: Assume that 𝑓(𝑧) is analytic and non-constant in a domain 𝐷 

of the complex 𝑧-plane. If 𝑓′(𝑧0) = 0 for some 𝑧0 ∈ 𝐷, then 𝑓(𝑧) is not 

conformal at this point. Such a point is called a Critical point of  𝑓 [8]. 
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Theorem. [Preservation of Harmonicity] If 𝑤 = 𝑢 + 𝑖𝑣 = 𝑓(𝑧) = 𝑓(𝑥 +

𝑖𝑦) is a mapping, where 𝑓(𝑧) is analytic in a domain 𝐷 of the 𝑧-plane 

and 𝜑(𝑥, 𝑦) is harmonic in 𝐷 (∇2𝜑= 0 𝑖𝑛 𝐷), then its image 𝜑∗(𝑥, 𝑦) is 

harmonic in 𝐷∗ (𝐷 → 𝐷∗).  

 

Proof. To prove this, we see that  

𝜑{𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)} = 𝜑∗(𝑢, 𝑣) ⇒ 𝑑𝜑 = 𝑑𝜑∗ 

⇒
∂𝜑

∂𝑥
𝑑𝑥 +

∂𝜑

∂𝑦
𝑑𝑦 =

∂𝜑∗

∂𝑢
{
∂𝑢

∂𝑥
𝑑𝑥 +

∂𝑢

∂𝑦
𝑑𝑦}+

∂𝜑∗

∂𝑣
{
∂𝑣

∂𝑥
𝑑𝑥 +

∂𝑣

∂𝑦
𝑑𝑦}. 

Therefore,  
∂𝜑

∂𝑥
=
∂𝜑∗

∂𝑢

∂𝑢

∂𝑥
+
∂𝜑∗

∂𝑣

∂𝑣

∂𝑥
 

       ⇒
∂2𝜑

∂𝑥2
=

∂𝜑∗

∂𝑢

∂2𝑢

∂𝑥2
+
∂𝜑∗

∂𝑣

∂2𝑣

∂𝑥2
+
∂𝑢

∂𝑥
{
∂2𝜑∗

∂𝑢2
∂𝑢

∂𝑥
+

∂2𝜑∗

∂𝑢∂𝑣

∂𝑣

∂𝑥
} +

∂𝑣

∂𝑥
{
∂2𝜑∗

∂𝑢∂𝑣

∂𝑢

∂𝑥
+
∂2𝜑∗

∂𝑣2
∂𝑣

∂𝑥
}.  

Therefore,  

∂2𝜑

∂𝑥2
=
∂𝜑∗

∂𝑢

∂2𝑢

∂𝑥2
+
∂𝜑∗

∂𝑣

∂2𝑣

∂𝑥2
+
∂2𝜑∗

∂𝑢2
(
∂𝑢

∂𝑥
)
2

+
∂2𝜑∗

∂𝑣2
(
∂𝑣

∂𝑥
)
2

+ 2
∂𝑢

∂𝑥

∂𝑣

∂𝑥

∂2𝜑∗

∂𝑢∂𝑣
. 

∂2𝜑

∂𝑦2
=
∂𝜑∗

∂𝑢

∂2𝑢

∂𝑦2
+
∂𝜑∗

∂𝑣

∂2𝑣

∂𝑦2
+
∂2𝜑∗

∂𝑢2
(
∂𝑢

∂𝑦
)
2

+
∂2𝜑∗

∂𝑣2
(
∂𝑣

∂𝑦
)
2

+ 2
∂𝑢

∂𝑦

∂𝑣

∂𝑦

∂2𝜑∗

∂𝑢∂𝑣
 

∴
∂2𝜑

∂𝑥2
+

∂2𝜑

∂𝑦2
=

∂𝜑∗

∂𝑢
(∇2𝑢)+

∂𝜑∗

∂𝑣
(∇2𝑢)+

∂2𝜑∗

∂𝑢2
{(
∂𝑢

∂𝑥
)
2
+ (

∂𝑢

∂𝑦
)
2
} +

∂2𝜑∗

∂𝑣2
{(
∂𝑣

∂𝑥
)
2
+

(
∂𝑣

∂𝑦
)
2
}                                                                                          

+2
∂2𝜑∗

∂𝑢∂𝑣
{
∂𝑢

∂𝑥

∂𝑣

∂𝑥
+
∂𝑢

∂𝑦

∂𝑣

∂𝑦
}. 

 But if 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in 𝐷, then 

∇2𝑢 = 0 = ∇2𝑣 𝑖𝑛 𝐷 

∂𝑢

∂𝑥
=
∂𝑣

∂𝑦
,

∂𝑢

∂𝑦
= −

∂𝑣

∂𝑥
 𝑖𝑛 𝐷 

∴
∂2𝜑

∂𝑥2
+
∂2𝜑

∂𝑦2
= |𝑓′(𝑧)|2 (

∂2𝜑∗

∂𝑢2
+
∂2𝜑∗

∂𝑣2
). 

Therefore, If 𝑓′(𝑧) ≠ 0 in 𝐷, then  

∂2𝜑

∂𝑥2
+
∂2𝜑

∂𝑦2
= 0 𝑖𝑛 𝐷 ⇒

∂2𝜑∗

∂𝑢2
+
∂2𝜑∗

∂𝑣2
= 0 𝑖𝑛 𝐷∗ (𝑖. 𝑒., 𝜑∗(𝑢, 𝑣) 𝑖𝑠 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑖𝑛 𝐷∗). 

 

Preservation of Boundary Conditions 

Suppose that 𝑤 = 𝑢 + 𝑖𝑣 = 𝜁(𝑧) is analytic in a domain 𝐷 and 𝜑(𝑥, 𝑦) is 

harmonic in 𝐷.  

Suppose that ∂𝐷 has an equation 𝑦 = 𝑓(𝑥). On ∂𝐷 the boundary 

condition is  
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∂𝜑

∂𝑛
= 0 = ∇𝜑 ⋅ 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 = (sin𝛼,−cos𝛼). 

∴ (
∂𝜑

∂𝑥
,
∂𝜑

∂𝑦
) ⋅ (sin𝛼, −cos𝛼)= 0 

⇒
∂𝜑

∂𝑥
tan𝑥 =

∂𝜑

∂𝑦
⇒
∂𝜑

∂𝑥
𝑓′(𝑥)=

∂𝜑

∂𝑦
 𝑜𝑛 𝐷. 

 

 

 

 

 

 

 

 

Figure 2: Transformation of Neumann condition. 

 

In the 𝑤-plane we have the following configuration: 

The equation of ∂𝐷∗ is given by 𝑣 = 𝐹(𝑢), therefore 𝑣(𝑥, 𝑦) = 𝐹{𝑢(𝑥, 𝑦)} 

is the equation of ∂𝐷.  

⇒ 𝑣(𝑥, 𝑦) = 𝐹{𝑢(𝑥, 𝑦)} ⇒ 𝑦 = 𝑓(𝑥) 

𝑑𝑣 = 𝑑𝐹 

∴
∂𝑣

∂𝑥
𝑑𝑥 +

∂𝑣

∂𝑦
𝑑𝑦 = 𝐹′(𝑢){

∂𝑢

∂𝑥
𝑑𝑥+

∂𝑢

∂𝑦
𝑑𝑦} 

⇒
∂𝑣

∂𝑥
+
∂𝑣

∂𝑦

𝑑𝑦

𝑑𝑥
= 𝐹′(𝑢) {

∂𝑢

∂𝑥
+
∂𝑢

∂𝑦

𝑑𝑦

𝑑𝑥
} 

∴

∂𝑣

∂𝑥
−𝐹′(𝑢)

∂𝑢

∂𝑥

𝐹′(𝑢)
∂𝑢

∂𝑦
−

∂𝑣

∂𝑦

=
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) 

∴ 𝑓′(𝑥) =
−𝑣𝑥 + 𝑢𝑥𝐹′(𝑢)

𝐹′(𝑢)𝑣𝑥 + 𝑢𝑥
. 

Now 𝜑(𝑥, 𝑦) = 𝜑{𝑥(𝑢,𝑣), 𝑦(𝑢, 𝑣)} = 𝜑∗(𝑢, 𝑣)  
∂𝜑

∂𝑥
𝑑𝑥 +

∂𝜑

∂𝑦
𝑑𝑦 =

∂𝜑∗

∂𝑢
{𝑢𝑥𝑑𝑥+ 𝑢𝑦𝑑𝑦}+

∂𝜑∗

∂𝑣
{𝑣𝑥𝑑𝑥+ 𝑣𝑦𝑑𝑦} 

∴
∂𝜑

∂𝑥
=
∂𝜑∗

∂𝑢
𝑢𝑥 +

∂𝜑∗

∂𝑣
𝑣𝑥, 

∂𝜑

∂𝑦
= −

∂𝜑∗

∂𝑢
𝑣𝑥 +

∂𝜑∗

∂𝑣
𝑢𝑥. 

∴ In the 𝑤-plane, the boundary condition on ∂𝐷∗ becomes  
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{
∂𝜑∗

∂𝑢
𝑢𝑥 +

∂𝜑∗

∂𝑣
𝑣𝑥} {𝑢𝑥𝐹′(𝑢)− 𝑣𝑥}

𝑢𝑥 + 𝑣𝑥𝐹′(𝑢)
= 𝑢𝑥

∂𝜑∗

∂𝑣
− 𝑣𝑥

∂𝜑∗

∂𝑢
 

⇒ {
∂𝜑∗

∂𝑢
𝑢𝑥 +

∂𝜑∗

∂𝑣
𝑣𝑥} {𝑢𝑥𝐹′(𝑢)− 𝑣𝑥} = (𝑢𝑥

∂𝜑∗

∂𝑣
− 𝑣𝑥

∂𝜑∗

∂𝑢
) (𝑢𝑥 + 𝑣𝑥𝐹′(𝑢)). 

∴
∂𝜑∗

∂𝑢
𝑢𝑥
2𝐹′(𝑢) −

∂𝜑∗

∂𝑢
𝑢𝑥𝑣𝑥 +

∂𝜑∗

∂𝑣
𝑣𝑥𝑢𝑥𝐹′(𝑢)−

∂𝜑∗

∂𝑣
𝑣𝑥
2 =

∂𝜑∗

∂𝑣
𝑢𝑥
2 +

∂𝜑∗

∂𝑣
𝑣𝑥𝑢𝑥𝐹′(𝑢)  

                                                                             −
∂𝜑∗

∂𝑢
𝑢𝑥𝑣𝑥 −

∂𝜑∗

∂𝑢
𝑣𝑥
2𝐹′(𝑢)  

⇒
∂𝜑∗

∂𝑢
𝑢𝑥
2𝐹′(𝑢) −

∂𝜑∗

∂𝑣
𝑣𝑥
2 =

∂𝜑∗

∂𝑣
𝑢𝑥
2 −

∂𝜑∗

∂𝑢
𝑣𝑥
2𝐹′(𝑢) 

⇒
∂𝜑∗

∂𝑢
𝐹′(𝑢)(𝑢𝑥

2 + 𝑣𝑥
2) =

∂𝜑∗

∂𝑣
(𝑢𝑥

2 + 𝑣𝑥
2) 

⇒ (
∂𝜑∗

∂𝑢
𝐹′(𝑢) −

∂𝜑∗

∂𝑣
)(|𝜁′(𝑧)|2) = 0. 

If 𝜁′(𝑧) ≠ 0 on ∂𝐷, then  
∂𝜑∗

∂𝑢
𝐹′(𝑢) =

∂𝜑∗

∂𝑣
 on ∂𝐷∗, which means that  

∂𝜑∗

∂𝑛∗
=

0 on ∂𝐷∗ . 

 

II. RELATED PROBLEMS 

The aim of this part is to show how we use conformal transformations 

in solving mathematical and physical problems. 

 

Example:   How to map the domain in the 𝑤-plane, which is outside 

the triangle shown in Fig. (3) and 𝐼𝑚𝑤 ≥ 0, onto the upper half of the 𝑧-

plane:  

First, we regard 𝐷 = lim
𝑝→∞

𝐷1 as shown in Fig. (4), 𝜃𝑘 → 0 as 𝑝 → ∞, 𝑘 =

1,2.  

  

𝑑𝑤

𝑑𝑧
= 𝑘(𝑧 + 1)−

1

3 𝑧
1

2 (𝑧− 𝑎3)
−
1

6 ,  

Figure 3: The w-plane. 

 

Figure 4: The w-plane. 
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∴ 𝑤 = 𝑘 ∫

𝑧

𝑧0

𝜁
1

2(𝜁 + 1)−
1

3(𝜁− 𝑎3)
−
1

6𝑑𝜁, 

𝑤 = −𝜇+ 𝑘 ∫

𝑧

−1

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁− 𝑎3)
1

6

. 

When 𝑤 = 𝑖𝜇√3 we have 𝑧 = 0  

∴ 𝜇(1+ 𝑖√3) = 𝑘∫
0

−1

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

.      ……. (1) 

 When 𝑤 = 3𝜇 we have 𝑧 = 𝑎3(𝑎3 > 0)  

∴ 4𝜇 = 𝑘 ∫

𝑎3

−1

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

= 𝑘 ∫

0

−1

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

+ 𝑘∫

𝑎3

0

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

. 

 From (1) we have  

4𝜇 = 𝜇(1 + 𝑖√3) + 𝑘∫
𝑎3
0

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

,     …………………. (2) 

∴
4𝜇√3

√3 + 𝑖
= 𝑘∫

𝑎3

0

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

, 

⇒
4𝜇√3

2𝑒𝑖
𝜋

6

= 𝑘∫

𝑎3

0

𝜉
1

2𝑑𝜉

(𝜉 + 1)
1

3{𝑒𝑖𝜋(𝑎3− 𝜉)}
1

6

, 

⇒ 2√3𝜇 = 𝑘∫
𝑎3

0

𝑥
1
2𝑑𝑥

(𝑥+1)
1
3(𝑎3−𝑥)

1
6

.    …………………. (3) 

 Also from (1) we have  

𝜇(1 + 𝑖√3) = 𝑘 ∫

0

−1

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

, 

 On the path of integration we have 𝜁 = 𝑡𝑒𝑖𝜋 ⇒ 𝑑𝜁 = −𝑑𝑡, 𝜁
1

2 = 𝑖𝑡
1

2  

∴ 𝜇(1 + 𝑖√3) = 𝑘∫

0

1

−𝑖𝑡
1

2𝑑𝑡

(1 − 𝑡)
1

3{𝑒𝑖𝜋(𝑡 + 𝑎3)}
1

6

, 

∴
2𝑒𝑖

𝜋

3𝑒𝑖
𝜋

6𝜇

𝑖
= 𝑘∫

1

0

𝑡
1

2𝑑𝑡

(1 − 𝑡)
1

3(𝑡 + 𝑎3)
1

6

, 

⇒ 2𝜇 = 𝑘∫
1

0

√𝑡𝑑𝑡

(1−𝑡)
1
3(𝑡+𝑎3)

1
6

.    …………………. (4) 

 Equations (3) and (4) determine the constants 𝑘 and 𝑎3. They also show 

that 𝑘 is real. 
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Note also that, the transformation can be written as an integral from 

𝜁 = 0 to 𝜁 = 𝑧, as follows: 

Since                   𝑤 = −𝜇 + 𝑘 ∫
0

−1

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

+ 𝑘∫
𝑧

0

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

, 

 Using (1) we obtain  

𝑤 = −𝜇 + 𝜇(1 + 𝑖√3) + 𝑘∫

𝑧

0

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

, 

Or                              𝑤 = 𝑖𝜇√3 + 𝑘∫
𝑧

0

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

 . 

Note that, in most of the cases, the Schwarz-Christoffel transformation 

is obtained in the form of an integral and cannot be obtained in closed 

form except in very few cases. However, the mapping can be used to 

find the behavior of 𝑤 when 𝑧 is very near to a certain it. 

Put 𝑧 = 𝑎3 + 𝑠, |𝑧 − 𝑎3| ≤ 1 ⇒ |𝑠| ≤ 1 in  𝑤 − 𝑖𝜇√3 = 𝑘∫
𝑧

0

𝜁
1
2𝑑𝜁

(𝜁+1)
1
3(𝜁−𝑎3)

1
6

, 

∴ 𝑤 − 𝑖𝜇√3 = 𝑘 ∫

𝑎3+𝑠

0

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3 )
1

6

= 𝑘 ∫

𝑎3

0

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

+ 𝑘 ∫

𝑎3+𝑠

𝑎3

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

, 

𝑤 − 𝑖𝜇√3 = 𝜇(3− 𝑖√3) + 𝑘 ∫

𝑎3+𝑠

𝑎3

𝜁
1

2𝑑𝜁

(𝜁 + 1)
1

3(𝜁 − 𝑎3)
1

6

, from Eqn. (2). 

Put 𝜁 = 𝑎3+ 𝜏, hence                     

𝑤− 3𝜇 = 𝑘∫

𝑠

0

(𝑎3+ 𝜏)
1

2𝑑𝜏

(𝑎3+1 + 𝜏)
1

3𝜏
1

6

. 

∴ 𝑤− 3𝜇 ∼ 𝑘
√𝑎3

√1+ 𝑎3
3

6

5
(𝑧 − 𝑎3)

5

6 𝑎𝑠 𝑧 → 𝑎3 . 

Example: To map the domain shown in the diagram onto the upper 

half-plane: 

 

 

 

 

 

 

 

 

Figure 5: The z-plane. 
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1. First, we apply the conformal map  

𝑧 = 𝛼 (𝜁 +
1

𝜁
), 

Where 𝛼 is a real constant to be determined. And as 𝑧 →∞ we have 𝜁 →

∞. 

To find 𝛾1
∗ (the image of 𝛾1 in the 𝜁 −plane) we put  

𝑎cos𝜃 + 𝑖𝑏sin𝜃 = 𝛼 {𝑅𝑒𝑖𝜑 +
1

𝑅
𝑒−𝑖𝜑}, 

⇒ 𝜃 = 𝜑,𝑎 = 𝛼 (𝑅 +
1

𝑅
) , 𝑏 = 𝛼 (𝑅 −

1

𝑅
) , (

𝜋

2
< 𝜑 < 𝜋) 

⇒
𝑎+ 𝑏

2
= 𝛼𝑅,

𝑎 − 𝑏

2
=
𝛼

𝑅
⇒ 𝛼2 =

𝑎2 − 𝑏2

4
 

⇒ 𝛼 =
1

2
√𝑎2 − 𝑏2 , 𝑅 =

𝑎 + 𝑏

√𝑎2 − 𝑏2
= √

𝑎 + 𝑏

𝑎 − 𝑏
= 𝜌 > 1. 

∴ 𝛾1
∗ Is the circular arc  

𝜁 = 𝜌𝑒𝑖𝜑, (
𝜋

2
< 𝜑 < 𝜋). 

To find 𝛾2
∗ we put 𝑧 = 𝑖𝑦 (𝑦 = 𝑏 → 𝑦 = 0) 

⇒ 𝑖𝑦 = 𝛼 (𝑅 +
1

𝑅
) cos𝜑 + 𝑖𝛼 (𝑅 −

1

𝑅
) sin𝜑 

⇒ 𝛼(𝑅 +
1

𝑅
) cos𝜑 = 0 ⇒ 𝜑 =

𝜋

2
, 

and                        
𝑦

𝛼
𝑅 = 𝑅2 − 1 ⇒ (𝑅 −

𝑦

2𝛼
)
2

= 1+
𝑦2

4𝛼2
 . 

∴ 𝑅 =
𝑦

2𝛼
± √1+

𝑦2

4𝛼2
. 

Because 𝑅 > 0 we take 𝑅 =
𝑦

2𝛼
+√1+

𝑦2

4𝛼2
. 

 If 𝑦 = 𝑏, then 𝑅 =
𝑏

2𝛼
+

𝑎

2𝛼
= 𝜌. If 𝑦 = 0 ⇒ 𝑅 = 1. 

∴ 𝛾2
∗ Is given by  

𝜁 = 𝑖𝜂, (𝜂 = 𝜌 → 𝜂 = 1). 

To find 𝛾3
∗: put 𝑧 = 𝑥 > 0  

⇒
𝑥

𝛼
= 𝜁 +

1

𝜁
⇒ (𝜁 −

𝑥

2𝛼
)
2

=
𝑥2

4𝛼2
− 1 

⇒ 𝜁 =
𝑥

2𝛼
±√

𝑥2

4𝛼2
−1. 

Because 𝜁 → ∞ as 𝑧 → ∞ we must have 𝜁 =
𝑥

2𝛼
+ √

𝑥2

4𝛼2
− 1. 
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If 0 < 𝑥 < 2𝛼, then  

𝜁 =
𝑥

2𝛼
+ 𝑖√1 −

𝑥2

4𝛼2
⇒ 𝜉2 + 𝜂2 = 1 = |𝜁|2 𝑎𝑛𝑑 𝜁 = 𝑒𝑖𝜑, (0 < 𝜑 <

𝜋

2
). 

If 𝑥 ≥ 2𝛼, then  

𝜂 = 0, 𝜉 =
𝑥

2𝛼
+√

𝑥2

4𝛼2
− 1  &  𝜁 = 𝜉, (1 ≤ 𝜉 < +∞). 

To find 𝛾4
∗ we put 𝑧 = 𝑥, 𝑥 ≤ −𝑎 or 𝑧 = −𝑡, 𝑡 ≥ 𝑎  

−𝑡 = 𝛼(𝜁 +
1

𝜁
) ⇒ −

𝑡

𝛼
𝜁 = 𝜁2 +1. 

∴ (𝜁 +
𝑡

2𝛼
)
2

=
𝑡2

4𝛼2
− 1⇒ 𝜁 =

−𝑡

2𝛼
±√

𝑡2

4𝛼2
− 1, 

𝜁 → ∞ when 𝑧 → ∞ ⇒ 𝜁 =
−𝑡

2𝛼
−√

𝑡2

4𝛼2
−1. 

Note that 𝑡2 − 4𝛼2 > 𝑎2 − (𝑎2 − 𝑏2) = 𝑏2  

∴ 0 > 𝜉 =
−𝑡

2𝛼
−√

𝑡2

4𝛼2
−1, 𝜂 = 0,−𝜌 ≤ 𝜉 < −∞ 

⇒ 𝜁 = 𝑅𝑒𝑖𝜋 , (𝜌 ≤ 𝑅 < ∞). 

 

 

 

 

 

 

 

 

Figure 6: The ζ-plane. 

 

2. Now, we apply the map 𝑤 = 𝑢+ 𝑖𝑣 = log𝜁: 

𝛾1
∗∗ Is found by  

𝑤 = 𝑢 + 𝑖𝑣 = log(𝜌𝑒𝑖𝜑) ⇒ 𝑢 = log𝜌,𝑣 = 𝜑 (
𝜋

2
< 𝜑 < 𝜋) . 

𝛾2
∗∗ Is obtained by putting 𝑤 = log(𝑅𝑒𝑖

𝜋

2) ⇒ 𝑢 = log𝑅 (𝑅 = 𝜌 → 𝑅 =

1), 𝑣 =
𝜋

2
  and for 𝛾3

∗∗ we put 𝑤 = log(𝑒𝑖𝜑) = 𝑖𝜑 (0 < 𝜑 <
𝜋

2
) and 𝑤 =

log𝑅 (1 ≤ 𝑅 < ∞). For 𝛾4
∗∗ put 𝑤 = log(𝑅𝑒𝑖𝜋) (𝜌 ≤ 𝑅 < ∞). 
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Note that the map from 𝐷 to 𝐷∗∗ is given by  

𝑧 = 𝛼(𝑒𝑤 + 𝑒−𝑤) = 2𝛼cosh𝑤 ⇒ 𝑧 = √𝑎2− 𝑏2 cosh𝑤. 

 

 

 

 

 

 

 

 

 

Figure 7: The w-plane. 

 

To map 𝐷∗∗ onto the upper half-plane we need the Schwarz-Christoffel 

transformation. This can be done by considering the limiting case as 

𝑃 → ∞.  

 

 

 

 

 

 

 

Figure 8: The w-plane. 

 

Example: [The Electric Field Distribution in a Semi-Infinite Domain] 

[4,7] 

                        𝛻2𝜑= 0 𝑖𝑛 𝐷 = {(𝑥, 𝑦): 𝑦 > 0,−∞< 𝑥 < ∞}
       𝜑 = 0 𝑜𝑛 𝑦 = 0,−∞ < 𝑥 < −1

𝜑 = 1 𝑜𝑛 𝑦 = 0, 1 < 𝑥 < ∞
 

The part −1 < 𝑥 < 1, 𝑦 = 0 is insulated (𝑖. 𝑒.,
𝜕𝜑

𝜕𝑦
= 0). 
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Figure 9: The z-plane. 

 

This is a mixed boundary value problem, and there are two different 

boundary conditions on the same boundary line. It is difficult to find 

the electric potential distribution directly. In order to solve this 

boundary value problem easily, we consider the mapping  

𝑤 = sin−1(𝑧).             …………….. (1) 

 The transformation function is  

𝑤 = sin−1(𝑧) =
𝜋

2
+ 𝑖log {𝑧 +√𝑧2− 1 }. 

On 𝛾1: let 𝑧 = 1 + 𝑡, (0 < 𝑡 < ∞) ⇒ 𝑧 − 1 = 𝑡 𝑎𝑛𝑑 𝑧+ 1 = 2 + 𝑡. 

∴ 𝛾1
∗ Is given by  

𝑤 =
𝜋

2
+ 𝑖log{1 + 𝑡 +√𝑡(2 + 𝑡)}. 

∴ On 𝛾1
∗:  

𝑢 =
𝜋

2
 𝑎𝑛𝑑 𝑣 = log{1 + 𝑡 +√𝑡(2+ 𝑡)} , (0 < 𝑡 < ∞) 

⇒ 𝑢 =
𝜋

2
, (0 < 𝑣 < ∞). 

On 𝛾2: let 𝑧 = (1 + 𝑡)𝑒𝑖𝜋 , (0 < 𝑡 < ∞) ⇒ 𝑧 + 1 = 𝑡𝑒𝑖𝜋 𝑎𝑛𝑑 𝑧− 1 = (2 +

𝑡)𝑒𝑖𝜋 . 

∴ 𝛾2
∗ is given by  

𝑤 =
𝜋

2
+ 𝑖log [−(1+ 𝑡)−√𝑡(2+ 𝑡)] 

=
𝜋

2
+ 𝑖log[𝑒𝑖𝜋{(1+ 𝑡) +√𝑡(2+ 𝑡)}] 

=
𝜋

2
+ 𝑖log{𝑒𝑖𝜋}+ 𝑖log{1 + 𝑡 +√𝑡(2+ 𝑡)} 

= (
𝜋

2
− 𝜋) + 𝑖log {1 + 𝑡 + √𝑡(2+ 𝑡)} 

= (−
𝜋

2
) + 𝑖log {1 + 𝑡 +√𝑡(2 + 𝑡)}. 

 ∴ On 𝛾2
∗:  
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𝑢 = −
𝜋

2
 𝑎𝑛𝑑 𝑣 = log {1 + 𝑡 + √𝑡(2+ 𝑡)} , (0 < 𝑡 < ∞) 

⇒ 𝑢 = −
𝜋

2
 𝑎𝑛𝑑 (0 < 𝑣 < ∞). 

On 𝛾3: let 𝑧 = 𝑡𝑒𝑖𝜋 , (0 ≤ 𝑡 < 1) ⇒ 𝑧 + 1 = 1 − 𝑡, 𝑧 − 1 = (1 + 𝑡)𝑒𝑖𝜋 . 

∴ 𝛾3
∗ is given by  

      𝑤 =
𝜋

2
+ 𝑖log{−𝑡 + 𝑖√(1− 𝑡2)} =

𝜋

2
+ 𝑖log{

−1

𝑡+𝑖√1−𝑡2
}  

                                                  =
𝜋

2
+ 𝑖log(𝑒𝑖𝜋)− 𝑖log{𝑡 + 𝑖√1 − 𝑡2} 

                                                  = −
𝜋

2
+ tan−1 {

√1−𝑡2

𝑡
} , (0 ≤ 𝑡 < 1). 

 ∴ On 𝛾3
∗:  

(−
𝜋

2
< 𝑢 ≤ 0) 𝑎𝑛𝑑 𝑣 = 0. 

On 𝛾4: let 𝑧 = 𝑡, (0 ≤ 𝑡 < 1) ⇒ 𝑧 − 1 = (1 − 𝑡)𝑒𝑖𝜋 𝑎𝑛𝑑 𝑧 + 1 = 1 + 𝑡. 

∴ 𝛾4
∗ is given by  

𝑤 =
𝜋

2
+ 𝑖log (𝑡 + 𝑖√1− 𝑡2) =

𝜋

2
− tan−1 {

√1 − 𝑡2

𝑡
}, (0 ≤ 𝑡 < 1). 

 ∴ On 𝛾4
∗: 𝑣 = 0 𝑎𝑛𝑑 (0 ≤ 𝑢 <

𝜋

2
). 

 

Thus, the upper half-plane of 𝑧-plane is mapped onto a semi-infinite 

strip of 𝑤-plan. The boundary condition at the bottom of the semi-

infinite strip is the Neumann boundary condition (𝑖. 𝑒.,
𝜕𝜑∗

𝜕𝑣
= 0), as 

shown 

{
 
 

 
 ∇

2𝜑∗ = 0 𝑖𝑛 𝐷∗ = {(𝑢, 𝑣): 𝑣 > 0,−
𝜋

2
< 𝑢 <

𝜋

2
}

𝜑∗ = 0 𝑓𝑜𝑟 0 < 𝑣 < ∞,𝑢 = −
𝜋

2

𝜑∗ = 1 𝑓𝑜𝑟 0 < 𝑣 < ∞,𝑢 =
𝜋

2

. 

The part −
𝜋

2
< 𝑢 <

𝜋

2
, 𝑣 = 0 is insulated (𝑖. 𝑒. ,

𝜕𝜑∗

𝜕𝑣
= 0). 
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Figure10: The w-plane. 

 

The electric field inside this domain is uniform, therefore, we should 

seek a solution that takes on constant values along the vertical lines 

𝑢 = 𝑢0 and that 𝜑∗(𝑢,𝑣) should be a function of 𝑢 alone. That is,  

𝜑∗(𝑢, 𝑣) = 𝐴𝑢+𝐵, 

for some real constant 𝐴 and 𝐵. 

The boundary conditions above lead to  

𝐵 =
1

2
,𝐴 =

1

𝜋
. 

∴ 𝜑∗(𝑢, 𝑣) =
1

𝜋
𝑢 +

1

2
= 𝑅𝑒 {

1

2
+
1

𝜋
𝑤}. 

To find the solution of the original problem, we must substitute for 𝑢 in 

terms of 𝑥 and 𝑦 as follows: 
𝑥2

sin2𝑢
−

𝑦2

cos2𝑢
= 1 ……… (2) 

Now, (2) is a hyperbola as shown  

 

 

 

 

 

 

 

Figure11: The z-plane. 

 

𝐴𝐵 = 2sin𝑢. It is obvious that  

𝑟1 + 𝑟2 > 2sin𝑢.  …….. (3) 

 Put sin2𝑢 = 𝑡 ⇒
𝑥2

𝑡
−

𝑦2

1−𝑡
= 1 ⇒ 𝑥2(1− 𝑡) − 𝑦2𝑡 = 𝑡 − 𝑡2 . 
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Therefore  

{𝑡 −
(𝑥2 +𝑦2+1)

2
}

2

=
(𝑥2 + 𝑦2+ 1)2 −4𝑥2

4
 

     ∴ 4𝑡 = 2𝑥2 + 2𝑦2+ 2 ±√{𝑥2+𝑦2 + 1 − 2𝑥}{𝑥2+ 𝑦2 + 1 + 2𝑥}  

= 𝑟1
2 + 𝑟2

2 ±2𝑟1𝑟2 = (𝑟1 ± 𝑟2)
2 

⇒ 4sin2𝑢 = (𝑟1 ± 𝑟2)
2 . 

∴ 2sin𝑢 = 𝑟1 ± 𝑟2 . 

In view of inequality (3), we reject the plus sign  

∴ sin𝑢 =
𝑟1−𝑟2

2
. ……… (4) 

∴ 𝑢 = sin−1(
𝑟2 − 𝑟1
2

), 

or                              𝑢 = sin−1 {
√(𝑥+1)2+𝑦2−√(𝑥−1)2+𝑦2

2
}. 

∴ The solution is  

𝜑 =
1

2
+ (

1

𝜋
) sin−1 {

√(𝑥+ 1)2 +𝑦2 −√(𝑥− 1)2 +𝑦2

2
}. 

 

Example: Use the appropriate transformation to solve the potential 

problem shown below: 

{
𝛻2𝜑 = 0 𝑖𝑛 𝐷 = {𝑧: |𝑧| < 1}

𝜑 = 0 𝑜𝑛 𝛾1 = {𝑧: |𝑧| = 1,0 < 𝑎𝑟𝑔𝑧 < 𝜋}

𝜑 = 𝜑0 𝑜𝑛 𝛾2 = {𝑧: |𝑧| = 1, 𝜋 < 𝑎𝑟𝑔𝑧 < 2𝜋}
. 

 

 

 

 

 

 

 

 

 

 

Figure12: The unit circle |z|=1 in the z-plane 

 

Note that 𝜑(𝑥, 𝑦) may be a temperature distribution in 𝐷 or an 

electrostatic potential due to some distribution of electric charges or a 

velocity potential where 𝐷 is a fluid region which is incompressible. 
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To solve the problem we employ the conformal transformation  

𝑧 =
𝑤− 𝑖

𝑤+ 𝑖
. 

This mapping maps the upper half of the 𝑤-plane onto the unit disc 

(i.e., 𝐷∗ →𝐷), on the other hand  

𝑧𝑤 + 𝑖𝑧 = 𝑤 − 𝑖 ⇒ 𝑤(1− 𝑧) = 𝑖(1 + 𝑧), 

∴ 𝑤 = 𝑢+ 𝑖𝑣 =
𝑖(1 + 𝑧)

1 − 𝑧
. 

On 𝛾1: 𝑧 = 𝑒
𝑖𝜃 , 0 < 𝜃 < 𝜋,  

⇒ 𝑤 = 𝑢 + 𝑖𝑣 =
𝑖(1+ 𝑒𝑖𝜃)

1 − 𝑒𝑖𝜃
=
𝑖(𝑒

𝑖𝜃

2 + 𝑒
−𝑖𝜃

2 )

𝑒
−𝑖𝜃

2 − 𝑒
𝑖𝜃

2

=
2𝑖cos

1

2
𝜃

−2𝑖sin
1

2
𝜃
=
−cos

1

2
𝜃

sin
1

2
𝜃
. 

∴ On 𝛾1
∗: 𝑣 = 0, (−∞< 𝑢 < 0). 

 On 𝛾2: 𝑧 = 𝑒
𝑖𝜃 , 𝜋 < 𝜃 < 2𝜋  

⇒ 𝑤 =
−cos

1

2
𝜃

sin
1

2
𝜃
,

𝜋

2
<
𝜃

2
< 𝜋. 

∴ on 𝛾2
∗: 𝑣 = 0, 0 < 𝑢 < ∞.  

By inspection, we see that  

𝜑∗ = 𝜑0 {1−
1

𝜋
arg𝑤}, 

Or                                     𝜑∗ = 𝜑0{1 −
1

𝜋
tan−1

𝑣

𝑢
}.  

 

 

 

 

 

 

 

 

 

Figure13: The image of the circle in Fig. (11) in the 𝒘 −𝒑𝒍𝒂𝒏𝒆. 

∴ 𝜑 = 𝜑0 {1−
1

𝜋
tan−1

𝑣(𝑥, 𝑦)

𝑢(𝑥, 𝑦)
}. 

Now              𝑤 =
𝑖(1+𝑥+𝑖𝑦)

1−𝑥−𝑖𝑦
=

𝑖(1+𝑥+𝑖𝑦)(1−𝑥+𝑖𝑦)

(1−𝑥)2+𝑦2
=

−2𝑦+𝑖(1−𝑥2−𝑦2)

(1−𝑥)2+𝑦2
 

∴ 𝜑(𝑥, 𝑦) = 𝜑0 {1 −
1

𝜋
tan−1

(1 − 𝑥2 − 𝑦2)

−2𝑦
}. 
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III. CONCLUSIONS AND RECOMMENDATIONS 

This part presents some conclusions derived from the conduct of the 

study of conformal mappings. It also provides some recommendations 

that can be followed when expanding the study. 

 

CONCLUSION 

From our modest study, we conclude the following: 

 Conformal maps are transformations that preserve angles 

between curves (angles between tangents) including their 

orientation. 

 Conformal maps are analytic functions whose derivatives do 

not vanish in the domains of definition (i.e., locally univalent).  

 If 𝑓 is a conformal map from 𝐷 onto 𝐷∗, then 𝑓−1 (the inverse 

map) is also a conformal map from 𝐷∗ onto 𝐷. 

 The Schwarz-Christoffel transformation maps the interior of a 

polygon, say in the 𝑤-plane, onto the upper half of the 𝑧-plane. 

 The harmonicity of a function is preserved under conformal 

maps. 

 Conformal maps take complicated boundaries into simpler ones 

sometimes. 

 We can determine a harmonic potential by using a conformal 

mapping that maps 𝐷 onto 𝐷∗ where the solution of the problem 

is easier to find. 

 

RECOMMENDATIONS 

This study dealt with the technique of conformal mapping without 

using computer programs and numerical techniques. Thus, the 

following recommendations are hereby presented: 

 Since the study dealt with this technique without using 

computer programs, a study should be attempted using these 

programs. 

 It is recommended that, numerical techniques should be used 

in the study of conformal maps. 
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