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Abstract 

The use of thin films for the development of high-performance 

solar panels has been widely studied. In this study, ITO substrate 

(glass coated with Indium Tin Oxide) was coated with TiO2 

nanoparticles by electrodeposition processes. AFM technique was used 

to study the morphology, thickness, and surface roughness. Five films 

were produced for different deposition times. The films' morphology 

was affected by the deposition time. The thickness increased as a 

function of the deposition time. The roughness decreased considerably 

when the deposition time increased. The coatings were considered 

uniform and homogeneous. These results were presented as an 

optimization of the TiO2/ITO system that can enhance the application 

of these films in the technological field. 

 

                                                             
1 Corresponding author: hdffilho@ufam.edu.br 
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INTRODUCTION 

 

Films of titanium dioxide TiO2 are extensively studied because of 

their interesting chemical, optical [1], photocatalytic, antimicrobial 

properties, [2] and electrical properties, besides to be one of the most 

studied semiconductors to make photovoltaic devices [1-7]. These 

kinds of materials can be used as an anti-reflective and protective 

coating for optical elements [8,9]. The versatility of this semiconductor 

is associated with low toxicity, high photochemical stability, 

abundance, and the facility to obtain by conventional synthesis routes 

[10-13]. Additionally, TiO2 has excellent enabling enhancement of 

these properties by chemical doping [14], heterojunction [15], or 

sensitization by dyes [16,17]. 

Photovoltaic devices based on titanium dioxide exhibit 

advantages in the conversion of solar light to electrical energy [16]. 

Among these, high stability to natural factors, low cost, easy to obtain, 

availability, and several methodologies of synthesis [16,18]. About the 

obtention of thin films, the electrodeposition [21, 22], spray pyrolysis 

[20], spin-coating [18], and sputtering [19] method was reported. In 

this context, Shriwastava and Singh [23] report the study of the 

growth of TiO2 films using the pulsed laser on silicon substrates, 

obtaining the mixtures between the anatase, brookite and rutile 

polymorphs. While Granados et al. [24] obtained thin films ( 300 nm) 

of mesoporous TiO2 (anatase) using the heat-treated spin-coating 

method at 300 to 600 ° C. Due to the strong relationship between the 

parameters relevant to each synthesis methodology and the textural 

properties, crystallite size and thickness of the obtained films, it is of 

interest to study the variables in the properties exhibited by the thin 

films. Therefore, in the study by Su et al. [4], thin films with high 

homogeneity were obtained using electrodeposition as a method for 

the growth of films, resulting in excellent photovoltaic properties. 

The understanding of the growth mechanisms and the study 

of the morphology of the films are essential to prepare materials in a 

controlled way for the desired properties. Therefore, studies based on 

the films morphology when the thickness is variated give an idea 
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about the growth mechanism of these films [25,26]. Scanning probe 

microscopy techniques, such as atomic force microscopy (AFM), have 

been a technique widely reported in the morphological 

characterization in real space, determination of thickness, roughness, 

and particle size in thin films [10]. In the case of TiO2, thin films were 

obtained by atomic layer deposition (ALD) and they were studied 

topographically by AFM using 2D and 3D analysis [27]. 

In the present work, we have focused our attention on the 

growth of nanostructured TiO2 films on ITO substrates which were 

obtained using the electrodeposition technique under different times 

deposition. Morphology and roughness as a function of film thickness 

and time deposition of the films are discussed. A correlation is 

established between time deposition, surface roughness, and growth 

morphology of the TiO2 films. 

 

EXPERIMENTAL SECTION 

 

TiO2 deposition on ITO substrate 

To prepare the electrolyte solution, previously, an ethanolic dispersion 

was prepared by mixing 2g of TiO2 (21 nm, Sigma-Aldrich) in 80 mL of 

ethanol (Vetec) and 0.1 mL of acetylacetone (Vetec) and kept in 

magnetic stirring for 24 hours, and fowling the procedures, it was 

prepared by dissolving in the ultrasonic bath for 25 minutes 20 mg of 

iodine (Sigma-Aldrich) in 20 mL of ethanol (Vetec), 2 mL of deionized 

water and 2 mL of acetone (Synth). To make the deposition, 

conductive substrates of indium tin oxide (ITO) coated on glass (15 

Ω/sq, Lumtech) were used. Afterward, the electrolyte solution was 

added to the TiO2ethanolic dispersion and submitted to the ultrasonic 

bath for 25 minutes. 

A specific holder with two connectors was used to place the 

ITO substrates of 2x1 cm, previously cleaned [10], in contact with 10 

mL of the electrolyte solution containing TiO2 dispersion. The exposed 

area to the dispersion was 1 cm2 and the separation among the 

substrates of 2 mm. Positive and negative poles were connected to the 

respective output plug in the power supply (Agilent E3616A) and to 

the ITO substrate attached to the holder. The substrate attached to 

the negative pole was used in this study. The deposition process was 

carried out applying 10 V to the substrate immersed by 02, 04, 06, 08, 
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and 10 seconds in the solution of electrolyte and TiO2 dispersion. After 

each deposition process, the solution and the substrate attached to the 

positive pole were renewed. Thereafter, the substrates were submitted 

at 300 ºC for 30 minutes after withdrawing the dispersion.  

 

AFM Imaging 

An Innova AFM from Bruker (Santa Barbara, CA, USA), operated on 

a taping mode, with a scan rate of 0.5 Hz, was used to make the 

surface characterization. The samples were scanned in air, and 40±1% 

relative humidity, over scanning areas of 5 x 5 μm2, with a resolution 

of 256 x 256 pixels using a silicon cantilever (k=40 N/m). The feedback 

control to obtain the best possible images was adapted to each surface 

and for all the applied scans. The analysis of the images was 

completed with the WSXM software, version 5.0, development 9.1 [28] 

and, through the images, it is possible to obtain the surface 

roughness. 

 

RESULTS AND DISCUSSION 

 

AFM Measurements Analysis 

The obtained films were analyzed by Atomic Force Microscopy to 

determine the morphological parameters of the surface and to 

interpret the growth according to the deposition time. The change in 

morphology of the TiO2 film as a function of its thickness has been 

followed by AFM and, to measure these thicknesses, topographical 

images of the film edges were performed. Two regions were scanned 

spanning the edge of a wear track as shown in figure 1, where a 

typical measure of thickness, together with a graphic profile of a line, 

is presented. In such an image, ten different thickness measurements 

were done, and the average thickness of the film was obtained. 
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Figure 1. An AFM image and one respectively line profile used to measure the 

films thickness. 

 

To correct distortions on topographical data, images were processed 

using a plane fit in the plane region, which corresponds the ITO 

surface. To produce the step between TiO2 film and the substrate, a 

small piece of adhesive tape was glued over ITO. As shown in figure 1, 

a line profile which was taken in the direction perpendicular to the 

step, it has an abrupt increase during the transition ITO/TiO2. From 

figure 2, it can be noted that the thickness has an increasing behavior 

without any evidence of saturation, varying from 1054,40 ± 101,23 nm 

to 2561,82 ± 87,97 nm.  

 
Figure 2. An AFM image and one, respectively line profile used to measure the 

films thickness. 

 

The influence of the deposition time on the microstructure and 

morphology surface of TiO2 deposited on the ITO substrate via 

electrodeposition can be observed through figure 3. The most relevant 

images of the 2D and 3D topography are shown in figure 2 a-e. 

Previously to any surface analysis, the originally acquired height data 

were processed using a plane fit, to first order, in both x and y 
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directions to correct any tilt between the tip and the sample plane, 

and the average height of the lines was adjusted by a zero order 

flatten procedure using WSXM software. No other processing was 

done after to avoid an overestimation of thickness or roughness 

calculations when examining the film surface by AFM.  

 
Figure 3. Typical three- 2 AFM images of TiO2 films with 

deposition times of: (a) 2, (b) 4, (c) 6, (d) 8, and (e)10 s. 

 

It can be clearly seen in figure 2 the evolution of surface features with 

deposition since the films surface morphology varies considerably with 

the increase in their thickness. This trend can be followed through 

figure 4, in which the profile of a single line of the image is presented 

according to the thickness of the film. It can be noted that the height, 

that is, the width of the interface, of the film profiles, does not change 

severely with increasing deposition time and, consequently, with the 

film thickness. It is also possible to note that the distribution of peaks 

and valleys has become more homogeneous as the deposition time 

increased. 
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Figure 4. Evolution of surface profile of TiO2 films as a function of deposition 

time. 

 

The mean square roughness RRMS is the standard deviation of the 

surface height distribution and is used to describe the surface 

roughness using statistical methods, being calculated by the equation 

[29]: 
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(1) 

 

The arithmetic mean roughness of the surface (RA) is one of the most 

universally used parameters and is defined as the absolute mean 

deviation of irregularities in the roughness of the midline over a 

length of the surface. RA is defined as [29]: 

 

 

(2) 

 

where Nx and Ny represent the number of points on the x and y axes, 

respectively. It is important to note that, comparatively RRMS is more 

sensitive to large deviations from the midline of the surface. 

For each TiO2 film, the RMS and RA roughness was obtained 

by evaluating at five AFM images measured in different regions of 

each sample. Figure 5 presents a graph of the Roughness as a 

function of the number of deposition cycles. It can be observed that 

both RMS and RA have the same behavior. RMS varies from 69,19 ± 

6,83 nm to 122,75 ± 24,05 nm and RA varies from 54,24 ± 5,25 to 

96,14 ± 19,6 per 5 μm2 area.  

 

 
Figure 5: Graphic representation of RMS and RA roughness as a function of 

deposition time. 

 

The surface of a thin film is highly reactive. It is necessary to control 

the superficial parameters to produce useful films without structural 
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failures [30]. In general, the morphology of the films was like those 

found in recent works (e.g., [31, 32]). In addition, grain size does not 

appear to be affected by deposition time. In fact, it was possible to 

observe uniform grains without variation in shape and size, of course, 

because the electrodeposition was carried out without changing the 

temperature. In contrast, Sertel et al. [33] deposited TiO2 on silicon 

plates and observed changes in grain size because they studied the 

effect of temperature. 

However, the thickness of the films increased exponentially 

(Fig. 2), simultaneously promoting the formation of less rough films 

(Fig. 5). For applications in solar systems, uniform energy absorption 

by the films is required. Therefore, it is necessary that the film has an 

appropriate thickness, so as not to create fragile films [34]. Very 

rough coatings promote diffuse reflection and, consequently, non-

uniform absorption of energy by the films. The formation of flatter 

and thinner coatings was a positive point for these films. 

It is known that the smaller thickness of the film, the greater 

the mechanical resistance is generally observed, because for greater 

thickness the minimum of stress can cause failure of the material 

[35]. The film produced with the longest deposition time was less thick 

than that developed by Chang et al. [36] (~2.5 against 10-12 µm). 

Therefore, the development of thin films using electrodeposition 

promoted the formation of uniform coatings and with a characteristic 

morphology of the TiO2 / ITO system. Moreover, we have achieved 

excellent results for films that are thinner than those found in the 

literature.  

 

CONCLUSIONS 

 

In this paper, thin TiO2 films were deposited on ITO substrates. 

Morphologies characteristic of the TiO2/ITO system were observed for 

all deposition times, but with a change in the profile from 2 to 10s. 

Furthermore, the distribution of peaks and valleys has become more 

homogeneous. The thickness of the film increased with the deposition 

time, but the values found were lower than those reported in the 

literature. The grains showed no variation in shape and size when the 

deposition time increased. Finally, the lower roughness achieved for 

higher thicknesses promoted the formation of flatter films. The 
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optimization of the TiO2 / ITO system can provide more effective 

coatings for capturing solar energy by solar panels based on this 

system. 
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