Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Industrial growth and CO₂ explosion in Nigeria

MUHAMMAD BILYAMINU ADO Yusuf Maitama Sule University, Kano

Abstract

This study analyzes the influence of industrial growth, financial performance, trade, FDI and energy use on CO₂ explosion in Nigeria by utilizing ARDL technique from 1980 to 2019. From the outcome of cointegration test, it is confirm that the variables have long run linkage in the model. From the short run estimates, industrial growth, financial performance, trade, FDI and energy use increase the capacity of CO_2 explosion. In addition, the estimated long run analysis also reveals that industrial growth, financial progress, FDI and energy utilization accelerates the level of CO_2 explosion in the country. Nevertheless, trade does not influence CO_2 discharge. Hence, as shown by the estimated analysis of the model that industrial growth positively increase CO_2 explosion in Nigeria, policymakers in the nation should emphasize on the policies that would simultaneously mitigates the explosion of CO_2 and increase the level of industrial growth for the nation's development. This can achieve through provision of other forms of energy resources like wind, solar and thermal for industrial use at least cost so as to progress industrial production and CO_2 mitigation. Moreover, there is a need to enhance measures on financial instruments and foreign relation on the CO_2 mitigation and development of the nation's economy.

 ${\bf Keywords} \colon {\rm CO}_2$ explosion, industrial growth, financial performance, Nigeria, ARDL

1. INTRODUCTION

The release of the global CO_2 discharge has been intensified in the recent years (IPCC, 2018). This has led to the serious environmental defects such as deterioration of ecosystem, climate and the world's

temperature (Danlami, Applanaidu, and Islam 2018). It is argued that global temperature have reached to more than 2°C and also projected rise up to 5°C in 2030 (IPCC, 2018; Tiwari, 2011). Hence, this may adversely affect agricultural produce, human and economic performance (Asongu, 2018). Developing nations today are in the forefront in discharging CO_2 which believe it constitute over 67 percent of the total global explosion (Shahzad et al., 2017). Similarly, the trend of CO_2 discharge in the African nations has been increased to the unexpected capacity due to the intensification of the nations to develop their production and energy use capacity (WDI 2017). This resulted to continue agitations by united nation on mitigating the level of CO_2 explosion.

In Nigeria, the level of CO_2 explosion have upsurge and reached a threat level with regard to climate nature and the settings of the ecosystem (WDI 2017). It affect agricultural production, seasonal rain fall, sea level alteration that cause many social and economic menace, like farmers herders crisis and Boko haram issues in the nation (Iyekekpolo 2020). In this regard, appropriate measures need to be considered for the purpose of tackling the situation. Industrial growth in the nation is currently contributing to the national development due to the government support with the need for economic diversification (World Bank, 2019). This have led to the rise in energy demand by almost 56 percent as well as increase in the capacity of GDP growth by 15 percent from 2016 to 2019 (CBN, 2020). Therefore, this condition may directly linked to the increased level of CO_2 explosion in the nation. Hence, the study investigates the influence of industrial growth on CO_2 discharge in Nigeria.

2. LITERATURE REVIEW

The linkage among industrial growth, financial performance, trade, FDI and energy are essentially discussed in the literature. For instance study by Asici (2015) stressed that industrial value accelerates the capacity of CO_2 explosion in emerging nations. Similarly, Heidari et al. (2015) reveal that industrial performance positively influence CO_2 discharge in 5 ASEAN nations. Abdouli and Hammami (2017) studied the influence of economic performance on CO2 in MENA economies by applying GMM method from 1990 to 2010. The outcome indicates that GDP growth upsurge the capacity of CO_2 explosion. This outcome if

found in the analysis obtained by earlier studies (Alvarado and Toledo, 2017). Moreover, study by Salahuddin et al. (2018) confirm a positive link among GDP performance and CO₂ explosion in Kuwait. Chen et al. (2019) study the effect industrial growth on CO_2 explosion in China. The finding reveals that industrial growth increase the level of CO_2 . Zheng-xin Wang and Li (2019) analyze the influence of economic performance on CO₂ discharge in China. Outcome indicates that economic performance upsurge the level of CO_2 . Bekun et al. (2019) documented that industrial growth accelerates the capacity of CO_2 explosion in EU nations. In another development, study by Javid and Sharif (2016) investigate the role of financial performance, GDP, energy utilization and trade on CO₂ explosion in Pakistan. The estimates reveals that financial performance, GDP and energy increase CO_2 explosion. Charfeddine and Kahia (2019) stressed that financial performance upsurge the level of CO₂ discharge in MENA nations. Gokmenoglu and Sadeghieh (2019) analyze the influence of financial progress, energy and GDP performance on CO2 in Turkey from 1960 to 2011. Outcome reveals that financial progress increased CO2 explosion. Wang et al. (2018) argued that energy utilization upsurge CO_2 in 170 economies. Sarkodie and Strezov (2019) proved a positive link among energy use and CO_2 explosion in emerging nations. Bekun, Alola and Sarkodie (2019) studied the influence of energy resources on CO₂ in 16 EU economies from 1996 to 2014. Outcome shows that energy resources increase CO₂ explosion. In another dimension, Zhang (2018) confirm that trade reduce CO_2 in industrialized nations. The outcome of this study is in line with findings documented by Asongu (2018) that trade decrease the level of CO₂ in `44 SSA nations. Liobikiene and Butkus (2019) investigate the performance of trade on CO_2 using GMM approach for 147 nations from 1990 to 2012. The study confirms that trade decrease the capacity of CO₂. From the literature reviewed it is shown that relations among the variables exists. However, studies on industrial growth on the CO₂ explosion are very little especially in less developed nations, like Nigeria. There the study examine the effect of industrial growth on CO₂ explosion in Nigeria.

Data and technique of the model's analysis Data

Based annual data for CO₂, industrial growth (industrial value % GDP), trade (sum of export and import), financial performance (% of

credit), FDI (net inflow), energy utilization (kg of oil equivalent) are utilized for the study estimation from 1980 to 2019. The data were sourced from WDI and all changed to the log value for clear interpretation. Table 1 shows result of the variables statistical nature. It indicates that IG recorded the largest mean value of 4.2, 7.1 and 4.3 maximum and minimum values. Nonetheless, CO_2 explosion has the least mean value of 0.2, 0.76 and 0.41 as maximum and minimum values.

Variables	Mean	SD	Min	Max	
LCO_2	0.272	0.126	0.412	0.768	
LIG	4.213	2.217	7.125	4.362	
LFD	2.631	4.732	1.602	1.091	
LTD	1.461	6.613	4.651	2.942	
LFDI	3.112	5.607	2.952	2.182	
LEU	0.747	3.522	1.752	4.810	

Table 1 variables statistical nature

3.2 Specification of the model

The study utilize a changed model used by Jebli et al. (2017) in analyzing the linkage among the study's variables as shown in the in equation 1

$$LCO_{2} = \alpha_{0} + \alpha_{1} LIG_{t} + \alpha_{2} LFD_{t} + \alpha_{3} LTD_{t} + \alpha_{4} LFDI_{t} + \alpha_{5} LEU_{t} + \varepsilon_{t}$$
(1)

In equation 1 LCO₂, LIG, LFD, LTD, LFDI and LEU indicates CO_2 explosion, industrial growth, financial performance, FDI and energy. Therefore, the employed ARDL method for the estimation and it is expressed in equation 2.

$$\Delta LCO2 = \beta_0 + \sum_{j=1}^n \beta_1 LCO2_{t-j} + \sum_{j=0}^n \beta_2 IG_{t-j} + \sum_{j=0}^n \beta_3 FD_{t-j} + \sum_{j=0}^n \beta_4 TD_{t-j} + \sum_{j=0}^n \beta_5 FDI_{t-j} + \sum_{j=0}^n \beta_6 EU_{t-j} + \alpha_1 LCO2 + \alpha_2 IG_t + \alpha_3 FD_t + \alpha_4 TD_t + \alpha_5 FDI_t + \alpha_6 EU_t + \varepsilon_t$$
(2)

In equation 2, t denotes the time, Δ illustrates the change and ε shows the disturbance term.

4. RESULT

This fragment illustrates the outcome for the stationarity tests as well as the estimation of the model. It is indicated that the variables have both level and first different stationarity nature from table 2 illustration under ADF and PP tests.

Variable	ADF		PP		ADF		PP	
	LEVEL		LEVEL		First Diff		First Diff	
LCO2	-2.63382*	(0.0004)	-1.91465*	(0.0002)				-
LIG	-1.42181	(0.3162)	-2.31673	(0.4731)	-2.42103*	(0.0000)	-6.53742*	(0.0000)
LFD	-3.16543	(0.2561)	-2.83261	(0.1456)	-1.73410*	(0.00003)	-2.54735*	(0.0004)
LTD	-1.46756	(0.1783)	-3.52142	(0.4107)	-7.37871*	(0.0000)	-1.89642*	(0.0002)
LFDI	-3.41272	(0.3782)	-1.20571	(0.5329)	-2.02362*	(0.0000)	-3.56715*	(0.0000)
LEU	-1.4523	(0.6217)	-3.85632	(0.3216)	-6.07274*	(0.0000)	-4.38017*	(0.0000)

Table 2	. Outcome	for	Stationa	rity
---------	-----------	-----	----------	------

Notes: * denotes significance at one percent.

From Table 3 it is revealed that long run nature association occur on the variables as indicated by F-statistics value.

Table 3. Result for cointegration test

	1%		5%	
F-statistics	I(0)	I(1)	I(0)	I(1)
4.76	3.41	4.68	2.26	3.79

Table 4 came up with the analysis of the model's estimation. The outcome from the short run estimates shows that industrial growth positively accelerates the capacity of CO_2 explosion in Nigeria. It indicates that a percent upsurge in industrial growth leads to a rise in CO₂ discharge by 3.2 percent. Similarly, financial progress, trade, FDI and energy resources increase the level of CO₂ explosion in the country by 0.5, 1.0, 2.0 and 2.0 respectively in the nation. In another development, the model obtained fit value of ECT which confirms the long run connection of the variables. In the long run estimated the analysis shows that industrial growth increases the level of CO_2 . This means that a percent rise in industrial growth caused CO₂ explosion to increase by 4.0 percent. Economically, the implication of this outcome is that 4.0 percent increase in CO₂ discharge in Nigeria is linked with rise in industrial growth. Therefore, policymakers in the country should emphasize on the policies that would simultaneously mitigates the explosion of CO_2 and increase the level of industrial growth for the nation's development. This can achieve through provision of other forms of energy resources like wind, solar and thermal for industrial use at least cost so as to progress industrial production and CO_2 mitigation. The outcome is consistent with result found by earlier studies (Asici, 2015). Furthermore, financial performance accelerates the explosion of CO_2 . It is reveals that a percent increase in financial performance result to upsurge in CO_2 discharge by 1.2 percent. Similarly, FDI and energy use increase the capacity of CO_2 discharge in the nation by 2.1 and 1.4 percent. However, trade have no influence on CO_2 explosion in Nigeria.

ARDL estimation	Coefficients	SD Errors	t-Statistics	Prob	
Short run estimates					
ΔLIG	3.201704**	0.006321	-2.143721	0.0004	
ΔLFD	0.586142^{**}	0.026190	1.970534	0.0142	
ΔLTD	1.013520*	0.001452	4.425730	0.0602	
∆ LFDI	2.081178**	0.030824	3.634271	0.2388	
ΔLEU	2.014791*	0.066477	-0.727358	0.0043	
ECT(-1)	-0.921300*	0.349571	-3.972246	0.0081	
Long run estimates					
LIG	4.010765*	0.007698	-2.167675	0.0092	
LFD	1.208547**	0.002632	3.020511	0.0098	
LTD	0.720162	0.105179	-1.726520	0.1326	
LFDI	2.140267**	1.584478	-0.018973	0.0077	
LEU	1.457642***	0.078251	-1.963420	0.0118	
С	4.104871***	2.558462	2.070086	0.0627	

Table 4. Estimated outcome for the model

Notes: ***. ** and * shows significant at 1, 5, and 10 percent

The validation checks for the model estimation is illustrated in Table 5. The outcome shows that the model is fit for policy suggestions as there is absence of heteroscedasticity, serial correlation, and normality hitches of the disturbance term in the model.

Test Type	F-statistics	Probability	Result
Breusch-Pagan Test.	0.629015	0.3108	No Heteroskedasticity
Breusch-Godfrey Test	0.367102	0.2673	No Serial Correlation
Jarque-Bera	0.197003	0.5093	Normally Distributed

5. CONCLUSION

This study analyze the influence of industrial growth, financial performance, trade, FDI and energy use on CO_2 explosion in Nigeria by utilizing ARDL technique from 1980 to 2019. From the outcome of cointegration test, it is confirm that the variables have long run linkage in the model. From the short run estimates, industrial growth, financial performance, trade, FDI and energy use increase the capacity of CO_2

explosion. In addition, the estimated long run analysis also reveals that industrial growth, financial progress, FDI and energy utilization accelerates the level of CO_2 explosion in the country. Nevertheless. trade does not influence CO_2 discharge. Hence, as shown by the estimated analysis of the model that industrial growth positively increase CO_2 explosion in Nigeria, policymakers in the nation should emphasize on the policies that would simultaneously mitigates the explosion of CO_2 and increase the level of industrial growth for the nation's development. This can achieve through provision of other forms of energy resources like wind, solar and thermal for industrial use at least cost so as to progress industrial production and CO_2 mitigation. Moreover, there is a need to enhance measures on financial instrument and foreign relation on the CO₂ mitigation and development of the nation's economy. From the basis of this study non incorporation of some essential factors of CO₂ discharge like gas and fossils energy use in the estimated model are termed as the limitation of the study. Thus, futures studies should use this essential factors for better policy suggestions.

REFERENCES

- Abdouli, Mohamed, and Sami Hammami. 2017. "The Impact of FDI Inflows and Invironmental Quality on Economic Growth: An Empirical Study for the MENA Countries." Journal of the Knowledge Economy 8 (1): 254–78. doi:10.1007/s13132-015-0323-y.
- Alvarado, Rafael, and Elisa Toledo. 2017. "Environmental Degradation and Economic Growth: Evidence for a Developing Country." *Environment, Development and Sustainability* 19 (4). Springer Netherlands: 1205–18. doi:10.1007/s10668-016-9790-y.
- Asici, Ahmet Atil. 2015. "Economic Growth and Its Impact on Environment : A Panel Data Analysis." *Ecological Indicators* 24 (2013): 324–33. doi:10.1016/j.ecolind.2012.06.019.
- Asongu, Simplice A. 2018a. "ICT, Openness and CO2 Emissions in Africa." *Environmental Science and Pollution Research* 25 (10). Environmental Science and Pollution Research: 9351–59. doi:10.1017/S0272263118000256.
- Asongu, Simplice A. 2018b. "CO2 Emission Thresholds for Inclusive Human Development in Sub-Saharan Africa." *Environmental Science and Pollution Research* 25 (26). Environmental Science and Pollution Research: 26005–19.
- Bekun, Festus Victor, Andrew Adewale Alola, and Samuel Asumadu Sarkodie. 2019. "Toward a Sustainable Environment: Nexus between CO 2 Emissions, Resource Rent, Renewable and Nonrenewable Energy in 16-EU Countries." Science of the Total Environment 657. Elsevier B.V.: 1023–29. doi:10.1016/j.scitotenv.2018.12.104.

- 7. Central Bank of Nigeria. 2020. "Statistical Bulletin."
- Charfeddine, Lanouar, and Montassar Kahia. 2019. "Impact of Renewable Energy Consumption and Financial Development on CO2 Emissions and Economic Growth in the MENA Region: A Panel Vector Autoregressive (PVAR) Analysis." *Renewable Energy* 139. Elsevier Ltd: 198–213. doi:10.1016/j.renene.2019.01.010.
- Chen, Yulong, Zheng Wang, and Zhangqi Zhong. 2019. "CO2 Emissions, Economic Growth, Renewable and Non-Renewable Energy Production and Foreign Trade in China." *Renewable Energy*, no. 131. Elsevier B.V.: 208–16. doi:10.1016/j.renene.2018.07.047.
- Danlami, Abubakar Hamid, Shri-Dewi Applanaidu, and Rabiul Islam. 2018. "Movement towards a Low Carbon Emitted Environment: A Test of Some Factors in Malaysia." *Environment, Development and Sustainability* 20 (3). Springer Netherlands: 1085–1102. doi:10.1007/s10668-017-9927-7.
- Gokmenoglu, Korhan K, and Mohammadesmaeil Sadeghieh. 2019. "Financial Development, CO 2 Emissions, Fossil Fuel Consumption and Economic Growth: The Case of Turkey." Strategic Planning for Energy and the Environment 38 (7): 7–28. doi:10.1080/10485236.2019.12054409.
- 12. Group World Bank. 2019. "Global Economic Prospects."
- Heidari, Hassan, Salih Turan Katirciog, and Lesyan Saeidpour. 2015. "Electrical Power and Energy Systems Economic Growth, CO 2 Emisesions, and Energy Consumption in the Five ASEAN Countries." *International Journal of Electrical Power and Energy Systems* 64: 785–91. doi:10.1016/j.ijepes.2014.07.081.
- 14. Intergovernmental Panel on Climate Change. 2018. "Global Warming of 1.5° C: An IPCC Special Report on the Impacts of Global Warming of 1.5° C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Chang."
- IPCC. 2014. "Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change." Geneva, Switzerland.
- Iyekekpolo, Wisdom Oghosa. 2020. "Political Elites and the Rise of the Boko Haram Insurgency in Nigeria." *Terrorism and Political Violence* 32 (4). Routledge: 749-67. doi:10.1080/09546553.2017.1400431.
- Javid, Muhammad, and Fatima Sharif. 2016. "Environmental Kuznets Curve and Financial Development in Pakistan." *Renewable and Sustainable Energy Reviews* 54. Elsevier: 406–14. doi:10.1016/j.rser.2015.10.019.
- Liobikienė, Genovaitė, and Mindaugas Butkus. 2019. "Scale, Composition, and Technique Effects through Which the Economic Growth, Foreign Direct Investment, Urbanization, and Trade Affect Greenhouse Gas Emissions." *Renewable Energy* 132. Elsevier B.V.: 1310–22. doi:10.1016/j.renene.2018.09.032.
- Salahuddin, Mohammad, Khorshed Alam, Ilhan Ozturk, and Kazi Sohag. 2018. "The Effects of Electricity Consumption, Economic Growth, Financial Development and Foreign Direct Investment on CO2emissions in Kuwait." *Renewable and Sustainable Energy Reviews* 81 (June). Elsevier Ltd: 2002–10. doi:10.1016/j.rser.2017.06.009.

- Sarkodie, Samuel Asumadu, and Vladimir Strezov. 2019. "Effect of Foreign Direct Investments, Economic Development and Energy Consumption on Greenhouse Gas Emissions in Developing Countries." Science of the Total Environment 646. Elsevier B.V.: 862–71. doi:10.1016/j.scitotenv.2018.07.365.
- Shahzad, Syed Jawad Hussain, Ronald Ravinesh Kumar, Muhammad Zakaria, and Maryam Hurr. 2017. "Carbon Emission, Energy Consumption, Trade Openness and Financial Development in Pakistan: A Revisit." *Renewable and Sustainable Energy Reviews* 70 (November 2015). Elsevier: 185–92. doi:10.1016/j.rser.2016.11.042.
- Tiwari, Aviral Kumar. 2011. "A Structural VAR Analysis of Renewable Energy Consumption, Real GDP and CO2 Emissions: Evidence from India." *Economics Bulletin* 31 (2): 1793–1806.
- Wang, Shaojian, Guangdong Li, and Chuanglin Fang. 2018. "Urbanization, Economic Growth, Energy Consumption, and CO2 Emissions: Empirical Evidence from Countries with Different Income Levels." *Renewable and Sustainable Energy Reviews* 81. Elsevier Ltd: 2144–59. doi:10.1016/j.rser.2017.06.025.
- Wang, Zheng-xin, and Qin Li. 2019. "Modelling the Nonlinear Relationship between CO2 Emissions and Economic Growth Using a PSO Algorithm-Based Grey Verhulst Model." *Journal of Cleaner Production* 207. Elsevier B.V.: 214– 24. doi:10.1016/j.jclepro.2018.10.010.
- 25. WDI. 2017. "World Development Indicators: Energy Dependency, Efficiency and Carbon Dioxide Emissions." Washington, DC.
- Zhang, Shun. 2018. "Is Trade Openness Good for Environment in South Korea? The Role of Non-Fossil Electricity Consumption." *Environmental Science and Pollution Research* 25 (10). Environmental Science and Pollution Research: 9510–22. doi:10.1007/s11356-018-1264-3.