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Abstract: 

The study investigated the effect of strategic content learning 

on mathematics achievement of students with learning disability. It 

employed a quasi experimental non-equivalent control group, pretest-

posttest research design. The population was all 864 senior secondary 

II students in the 14 public secondary schools and a sample of all 47 

(males-23, females-24) senior secondary II students drawn from intact 

classes in four randomly sampled coeducation secondary schools in 

Uzo-uwani local government area of Nsukka education zone, Enugu 

State, Nigeria. Two instructional programmes were developed and 

used for the study; they are mathematics/strategic content learning 

instructional plan (MSCLIP) and Mathematics conventional teaching 

lesson plan (MCTLP). Two research questions and two null hypotheses 

guided the study. The findings revealed that intervention with 

strategic content learning significantly improved mathematics 

achievement of students with mathematics learning disability and that 

gender as a factor does not have a significant influence on the 

mathematics achievement of students with mathematics learning 

disability taught using strategic content learning.  
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I. Introduction 

 

Mathematics is the study of numbers and quantities and their 

relationships. Mathematics requires an understanding of the 

logic and rules used to solve numerical problems. Numerical 

analysis is an important part of mathematics known as the 

study of quantitative approximations to the solutions of 

mathematical problems including consideration of and bounds 

to the errors involved. Numerical analysis involves the study of 

methods of computing numerical data. (In many problems this 

implies producing a sequence of approximations by repeating 

the procedure again and again). People who employ numerical 

methods for solving problems have to worry about the following 

issues: the rate of convergence (how long does it take for the 

method to and the answer), the accuracy (or even validity) of 

the answer and the completeness of the response (do other 

solutions, in addition to the one found that exist).Numerical 

methods provide approximations to the problems in question 

.No matter how accurate they are they do not, in most cases, 

provide the exact answer. In some instances working out the 

exact answer by a deferent approach may not be possible or 

may be too time consuming and it is in these cases where 

numerical methods are most often used. In numerical analysis, 

numerical integration constitutes a broad family of 

algorithms for calculating the numerical value of a definite 

integral, and by extension, the term is also sometimes used to 

describe the numerical solutions of differential equations. Here 

we focuses on calculation of define integrals. The term 

numerical quadrature (often abbreviated to quadrature) is 

more or less a synonym for numerical integration, especially as 

applied to one-dimensional integrals. Numerical integration 

over more than one dimension is sometimes described as 
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cubature, although the meaning of quadrature is understood 

for higher dimensional integration as well. The basic problem in 

numerical integration is to compute an approximate solution to 

a definite integral. 


b

a

dxxf )(

 
If f(x) is a smooth function integrated over a small number of 

dimensions, and the domain of integration is bounded, there are 

many methods for approximating the integral to the desired 

precision. 

 
Fig (1.1) Numerical integration consists of finding numerical 

approximations for the value S . 

 

Methodology 

 

On the basis of available literature we have studied different 

methods of   numerical integration: Trapezoidal, Simpson’s 

One-Third and Simpson’s Three-Eight, Gaussian Integration, 

Euler-McLaren Integration and Romberg Integration. Using 

these methods we have solved numerical problems, and done a 

comparative study of these methods. We have also solved 

nonlinear integration problem of civil engineering by using 

numerical integration. Newton-cote’s Quadrature Formula: 

Let 
b

a
ydxI where y takes the values nyyyy ..,,.........,, 210 for 

nxxxxx ,........,,, 210 .Let the interval of integration (a, b) be divided into n equal 

http://upload.wikimedia.org/wikipedia/commons/f/f2/Integral_as_region_under_curve.svg
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This is a general quadrature formula and is known as Newton-

Cote’s quadrature formula. A number of important deductions 

viz. Trapezoidal rule, Simpson’s one-third and three-eighth 

rules, can be immediately deduced by putting n = 1, 2 and 3 

respectively, in formula (1). 

 

Trapezoidal Rule (n = 1). 

Putting n = 1 in formula (1) and taking the curve through ),( 00 yx  and ),( 11 yx  

as a polynomial of degree one so that differences of order higher than one 

vanish, we get 
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Adding the above integrals, we get 
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This is known as Trapezoidal rule. By increasing the number of 

subintervals, thereby making h very small, we can improve the 

accuracy of the value of the given integral. 
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Simpson’s One-Third Rule (n = 2). 

Putting n = 2 in formula (1) and taking the curve through ),( 00 yx , ),( 11 yx and 

),( 22 yx  as a polynomial of degree two so that differences of order higher than 

two vanish, we get, 
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Adding the above integrals, we get, 
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This is known as Simpson’s one-third rule. 

While using this formula, the given interval of integration must 

be divided into an even number of sub-intervals, since we find 

the area over two sub-intervals at a time. 

 

Simpson’s Three-Eight Rule (n = 3). 

Putting n = 3 in formula (1) and taking the curve through ),( 00 yx , ),( 11 yx , 

),( 22 yx  and ),( 33 yx as a polynomial of degree three so that differences of 

order higher than two vanish, we get, 
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Adding the above integrals, we get, 
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This is known as Simpson’s three-eighth rule. 

While using this formula, the given interval of integration must 

be divided into sub-intervals whose number n is a multiple of 3. 

 

Errors in Quadrature Formula: 

If py  is a polynomial representing the function )(xfy   in the interval ],[ ba  

then error in the quadrature formulae is given by 
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Error in Trapezoidal Rule: 

Expanding )(xfy  in the neighborhood of 0xx   by Taylor’s series, we get 
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Now, area of the first trapezium in the interval )(
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Subtracting eqn. (7) from eqn. (4) gives the error in ),,( 10 xx  
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Hence the error in the trapezoidal rule is of order h2. 

 

Error in Simpson’s 1/3rd Rule: 

 
Integrating eqn. (4.3) with respect tox between the limits x0 and x2. 
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Where A1 is the area of the curve in the interval ],[ 20 xx .  

Putting 10 , yyhxx   in (2), we get 
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Putting 20 ,2 yyhxx   in (2), we get 
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Substituting eqns. (10) and (11) in eqn. (4.9), we get 
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Now, the error in interval ],[ 20 xx  is given by 
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Hence, the error in the Simpson’s (1/3)rd rule is or order h4. 

Note.  
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Similarly, the principal part of the error for Simpson’s (3/8)th rule is 
)(

5

80

3 ivy
h

 in the 

interval ],[ 30 xx . 

Romberg Integration. 

 

In numerical analysis, Romberg's method (Romberg 1955) is 

used to estimate the definite integral. 

( )

b

a

f x dx
 

by applying Richardson extrapolation (Richardson 1911) 

repeatedly on the trapezium rule or the rectangle 

rule (midpoint rule). The estimates generate a triangular array. 

Romberg's method is a Newton-Cotes formula -it evaluates the 

integrand at equally-spaced points. The integrand must have 

continuous derivatives, though fairly good results may be 

obtained if only a few derivatives exist. If it is possible to 

evaluate the integrand at unequally-spaced points, then other 

methods such as Gaussian quadrature and Clenshaw–Curtis 

quadrature are generally more accurate. The method is named 

after Werner Romberg (1909–2003), who published the method 

in 1955. Now we are applying the   Romberg's method of 

integration for the results obtained by the above method we are 

finding a good result comparison to above method. 

However, Romberg used a recursive algorithm for the 

extrapolation as follows: 

The estimate of the true error in the trapezoidal rule is given by 
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 Since the segment width, h , is given by         
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The estimate of true error is given by 

2ChEt        (14)                         

           

It can be shown that the exact true error could be written as 
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and for small h , 
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Since we used 
2ChEt   in the formula (Equation (16)), the result obtained 

from (14)Equation  has an error of  4hO  and can be written as 
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Where the variable TV  is replaced by  
RnI 2  as the value obtained using 

Richardson’s extrapolation formula.  Note also that the sign   is replaced by the 

sign =. 

Hence the estimate of the true value now is 

   4

2 ChITV
Rn   
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Determine another integral value with further halving the step size (doubling the 

number of segments), 
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The above equation now has the error of  6hO .  The above procedure can be 

further improved by using the new values of the estimate of the true value that 

has the error of  6hO  to give an estimate of  8hO . 

Based on this procedure, a general expression for Romberg integration can be 

written as 

2 ,
14 1
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The index k  represents the order of extrapolation.  For example,  1k  

represents the values obtained from the regular trapezoidal rule, 2k  

represents the values obtained using the true error estimate as  2hO , etc.  The 

index j  represents the more and less accurate estimate of the integral.  The 

value of an integral with a 1j  index is more accurate than the value of the 

integral with a j  index. 

For  2k , 1j , 
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Application in engineering problem. 

 

Problem:  A cross section of a racing sailboat is shown in fig 

.4.1(a). Wind forces (f ) exerted per foot of must from the sails 

very as a function of distance above the deck of the boat (z),as 

in Fig.4.1(b). Calculate the  tensile  force T in the mast  support 

cable, assuming that the right support cable in completely slack 

and the must joins the deck in a manner that transmits  

horizontal or vertical forces but on moments. Assume remains 

vertical. 

 

 

 
Fig ( 4.1) (a) cross section of a racing sailboat 
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(b) 

Fig( 4.1) wind forces (f ) exerted per foot of must from the sails very 

as a function of distance above the deck of the boat 

 

 
              Fig( 4.2)Forces exerted on the mast of a sailboat 

 

Solution:  To proceed with this problem, it is required that the 

distributed force f be converted to an equivalent total force F 

and that its effective location above the dack d be calculated 

Fig( 4.2). This computation be completed by the fact that the 

force exerted per foot of mast varies with the distance above the 

deck. The total force exerted on the mast can be expressed as 

the integral of a continuous function. 
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The nonlinear integral is difficult to evaluate analytically. 

Therefore, it is convenient to employ numerical approaches 

such as Simson’s rule and the trapezoidal rule for this 

problem.This is accomplished by calculating f(z) for various 

values of z.  

 

Description: values of f(z) for a step size 3 ft that provide data 

for the trapezoidal rule and Simpson’s 1/3 rule. 

 

Z,ft 0 3 6 9 12 15 18 21 24 27 30 

f(z),lb/ft    0 61.40      73.13      70.56        63.43       55.18        47.14         39.83         33.42          27.89                23.20 

 

Solution: Value of F computed on the basis of various version 

of the trapezoidal rule and Simpson’s 1/3 rule. 

 

Table( 6) Trapezoidal Rule 
Step size, ft Segments  F,lb 

15 2 1001.7 

10 3 1222.3 

6 5 1372.3 

3 10 1450.8 

1 30 1477.1 

.5 60 1479.7 

.25 120 1480.3 

.1 300 1480.5 

.05 600 1480.6 

 

 

Table( 7) Simpson 1/3 Rule 

Step size, ft Segments  F,lb 

15 2 1219.6 

5 6 1462.9 

3 10 1476.9 

1 30 1480.5 

0.5 60 1480.6 
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Now we are applying the Romberg's method of integration for 

the results obtained by the above methods. 

 

Result obtained by Romberg's method of integration: 
I(h)=1477.1  I(h/2)=1479.7                         I(h/4)=1480.3   

I(h,h/2)=1477.3  I(h/2,h/4)=1480.86                          I(h,h/2,h/4)=1481.34 

 

Conclusion 

 

We have seen that in situations where it is impossible to know 

the function governing some phenomenon exactly, it is still 

possible to derive a reasonable estimate for the integral of the 

function based on data points. The idea is to choose a model 

function going through the data points and integrate the model 

function. The definition of an integral as a limit of Riemann 

sums shows that if we chose enough data points, the integral of 

the model function converges to the integral of the unknown 

function; so theoretically, numerical integration is on solid 

ground. We have also seen that there are many practical factors 

that influence how well numerical integration works. Simple 

model functions may not emulate the behavior of the unknown 

function well. Complicated model functions are hard to work 

with. Problems with the number of data points, or the way in 

which the data was collected can have a major impact, and 

while we have explored some simple ways of estimating how 

accurate a particular numerical integral will be, this can be 

quite complicated in general. 

On the basis of the above discussions we conclude that 

the result obtained by Romberg method is better than any other 

methods used in the study since Romberg method always 

modifies the results. 

 

 

 

 

 



Zainab Hasan Msheree, Mohammed Mukheef Abed- Numerical Integration by 

Different Numerical Techniques 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 3 / June 2014 

4056 

REFERENCES 

 

Adimy, Mostafa, Oscar Angulo, Fabien Crauste, Juan C. López-

Marcos. 2008. “Numerical integration of a mathematical 

model of hematopoietic stem cell dynamics.” Computers 

& Mathematics with Applications 56(3): 594-606. 

Gourdon, Xavier and Pascal Sebah. 2002. Introduction on 

Bernoulli's numbers. 

Hadjifotinou, K.G. 2002. “Numerical integration of the 

variational equations of satellite orbits.” Planetary and 

Space Science 50(4): 361-369. 

Lorenzini, R. and L. Passoni. 1999. “Test of numerical methods 

for the integration of kinetic equations in tropospheric 

chemistry.” Computer Physics Communications 117(3): 

241-249. 

Mai, Enrico and Robin Geyer. 2013.  

“Numerical Orbit Integration based on Lie Series with 

Use of Parallel Computing Techniques.” Advances in 

Space Research (In Press, Accepted 

Manuscript, Available online 21 October 2013) 

Meng, Zhao-Liang and Zhong-Xuan Luo. 2011. “The 

construction of numerical integration rules of degree 

three for product regions.” Applied Mathematics and 

Computation 218(5): 2036-2043.  

Papoulis, A. 1984. Probability, Random Variables, and 

Stochastic Processes. 2nd ed. New York: McGraw-Hill, 

pp. 147-148. 

Petrovskaya, Natalia and Ezio Venturino. 2011. “Numerical 

integration of sparsely sampled data.” Simulation 

Modeling Practice and Theory 19(9): 1860-1872  

Sladek, V., J. Sladek, and M. Tanaka. 2001. “Numerical 

integration of logarithmic and nearly logarithmic 

singularity in BEMs.” Applied Mathematical Modelling 

25(11): 901-922. 



Zainab Hasan Msheree, Mohammed Mukheef Abed- Numerical Integration by 

Different Numerical Techniques 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 3 / June 2014 

4057 

Vardi, I. 1991. "The Euler-Maclaurin Formula." 

In Computational Recreations in Mathematica, 159-163. 

Reading, MA: Addison-Wesley. 

Watson, G. N. 1928. "Theorems Stated by Ramanujan (IV): 

Theorems on Approximate Integration and Summation 

of Series." J. London Math. Soc. 3: 282-289. 

Weisstein, Eric W. "Euler–Maclaurin Integration 

Formulas." MathWorld. 

Whittaker, E. T. and Robinson, G. 1967. "The Euler-Maclaurin 

Formula." §67 In The Calculus of Observations: A 

Treatise on Numerical Mathematics, 134-136. 4th 

ed. New York: Dover. 

Whittaker, E. T. and Watson, G. N. 1990. "The Euler-Maclaurin 

Expansion." In  A Course in Modern Analysis, 127-128. 

4th ed. Cambridge, England: Cambridge University 

Press. 

Xiu, Dongbin. 2008. “Numerical integration formulas of degree 

two.” Applied Numerical Mathematics 58(10): 1515-

1520. 

 


